Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
E
examples
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Simon Spies
examples
Commits
dd32b1ff
Commit
dd32b1ff
authored
Nov 07, 2019
by
Ralf Jung
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'ci/amin/fix-logrell-soundness' into 'master'
Fix logrel soundness proofs See merge request
iris/examples!27
parents
a83f57e6
b95a80e0
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
19 additions
and
18 deletions
+19
-18
opam
opam
+1
-1
theories/logrel/F_mu/soundness.v
theories/logrel/F_mu/soundness.v
+5
-5
theories/logrel/F_mu_ref/soundness.v
theories/logrel/F_mu_ref/soundness.v
+5
-5
theories/logrel/F_mu_ref_conc/soundness_unary.v
theories/logrel/F_mu_ref_conc/soundness_unary.v
+5
-4
theories/logrel/stlc/soundness.v
theories/logrel/stlc/soundness.v
+3
-3
No files found.
opam
View file @
dd32b1ff
...
...
@@ -9,6 +9,6 @@ build: [make "-j%{jobs}%"]
install: [make "install"]
remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris_examples"]
depends: [
"coq-iris" { (= "dev.2019-11-0
2.1.9d4613fc
") | (= "dev") }
"coq-iris" { (= "dev.2019-11-0
7.3.eb2dfc72
") | (= "dev") }
"coq-autosubst" { = "dev.coq86" }
]
theories/logrel/F_mu/soundness.v
View file @
dd32b1ff
...
...
@@ -4,10 +4,11 @@ From iris.program_logic Require Import adequacy.
Theorem
soundness
Σ
`
{
invPreG
Σ
}
e
τ
e'
thp
σ
σ
'
:
(
∀
`
{
irisG
F_mu_lang
Σ
},
[]
⊨
e
:
τ
)
→
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
is_Some
(
to_val
e'
)
∨
reducible
e'
σ
'
.
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
not_stuck
e'
σ
'
.
Proof
.
intros
Hlog
??.
cut
(
adequate
NotStuck
e
σ
(
λ
_
_
,
True
))
;
first
(
intros
[
_
?]
;
eauto
).
intros
Hlog
??.
cut
(
adequate
NotStuck
e
σ
(
λ
_
_
,
True
))
;
first
by
intros
[
_
Hsafe
]
;
eapply
Hsafe
;
eauto
.
eapply
(
wp_adequacy
Σ
)
;
eauto
.
iIntros
(
Hinv
?).
iModIntro
.
iExists
(
λ
_
_
,
True
%
I
),
(
λ
_
,
True
%
I
).
iSplit
=>
//.
replace
e
with
e
.[
env_subst
[]]
by
by
asimpl
.
...
...
@@ -17,8 +18,7 @@ Qed.
Corollary
type_soundness
e
τ
e'
thp
σ
σ
'
:
[]
⊢
ₜ
e
:
τ
→
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
is_Some
(
to_val
e'
)
∨
reducible
e'
σ
'
.
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
not_stuck
e'
σ
'
.
Proof
.
intros
??.
set
(
Σ
:
=
inv
Σ
).
eapply
(
soundness
Σ
)
;
eauto
using
fundamental
.
...
...
theories/logrel/F_mu_ref/soundness.v
View file @
dd32b1ff
...
...
@@ -10,10 +10,11 @@ Class heapPreG Σ := HeapPreG {
Theorem
soundness
Σ
`
{
heapPreG
Σ
}
e
τ
e'
thp
σ
σ
'
:
(
∀
`
{
heapG
Σ
},
[]
⊨
e
:
τ
)
→
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
is_Some
(
to_val
e'
)
∨
reducible
e'
σ
'
.
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
not_stuck
e'
σ
'
.
Proof
.
intros
Hlog
??.
cut
(
adequate
NotStuck
e
σ
(
λ
_
_
,
True
))
;
first
(
intros
[
_
?]
;
eauto
).
intros
Hlog
??.
cut
(
adequate
NotStuck
e
σ
(
λ
_
_
,
True
))
;
first
by
intros
[
_
Hsafe
]
;
eapply
Hsafe
;
eauto
.
eapply
(
wp_adequacy
Σ
_
)
;
eauto
.
iIntros
(
Hinv
?).
iMod
(
gen_heap_init
σ
)
as
(
Hheap
)
"Hh"
.
...
...
@@ -27,8 +28,7 @@ Qed.
Corollary
type_soundness
e
τ
e'
thp
σ
σ
'
:
[]
⊢
ₜ
e
:
τ
→
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
is_Some
(
to_val
e'
)
∨
reducible
e'
σ
'
.
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
not_stuck
e'
σ
'
.
Proof
.
intros
??.
set
(
Σ
:
=
#[
inv
Σ
;
gen_heap
Σ
loc
val
]).
set
(
HG
:
=
HeapPreG
Σ
_
_
).
...
...
theories/logrel/F_mu_ref_conc/soundness_unary.v
View file @
dd32b1ff
...
...
@@ -11,9 +11,11 @@ Class heapPreIG Σ := HeapPreIG {
Theorem
soundness
Σ
`
{
heapPreIG
Σ
}
e
τ
e'
thp
σ
σ
'
:
(
∀
`
{
heapIG
Σ
},
[]
⊨
e
:
τ
)
→
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
is_Some
(
to_val
e'
)
∨
reducible
e'
σ
'
.
not_stuck
e'
σ
'
.
Proof
.
intros
Hlog
??.
cut
(
adequate
NotStuck
e
σ
(
λ
_
_
,
True
))
;
first
(
intros
[
_
?]
;
eauto
).
intros
Hlog
??.
cut
(
adequate
NotStuck
e
σ
(
λ
_
_
,
True
))
;
first
by
intros
[
_
Hsafe
]
;
eapply
Hsafe
;
eauto
.
eapply
(
wp_adequacy
Σ
_
).
iIntros
(
Hinv
?).
iMod
(
gen_heap_init
σ
)
as
(
Hheap
)
"Hh"
.
iModIntro
.
iExists
(
λ
σ
_
,
gen_heap_ctx
σ
),
(
λ
_
,
True
%
I
)
;
iFrame
.
...
...
@@ -26,8 +28,7 @@ Qed.
Corollary
type_soundness
e
τ
e'
thp
σ
σ
'
:
[]
⊢
ₜ
e
:
τ
→
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
is_Some
(
to_val
e'
)
∨
reducible
e'
σ
'
.
rtc
erased_step
([
e
],
σ
)
(
thp
,
σ
'
)
→
e'
∈
thp
→
not_stuck
e'
σ
'
.
Proof
.
intros
??.
set
(
Σ
:
=
#[
inv
Σ
;
gen_heap
Σ
loc
F_mu_ref_conc
.
val
]).
set
(
HG
:
=
HeapPreIG
Σ
_
_
).
...
...
theories/logrel/stlc/soundness.v
View file @
dd32b1ff
...
...
@@ -10,11 +10,11 @@ Proof.
Qed
.
Theorem
soundness
e
τ
e'
thp
:
[]
⊢
ₜ
e
:
τ
→
rtc
erased_step
([
e
],
())
(
thp
,
())
→
e'
∈
thp
→
is_Some
(
to_val
e'
)
∨
reducible
e'
().
[]
⊢
ₜ
e
:
τ
→
rtc
erased_step
([
e
],
())
(
thp
,
())
→
e'
∈
thp
→
not_stuck
e'
().
Proof
.
set
(
Σ
:
=
inv
Σ
).
intros
.
cut
(
adequate
NotStuck
e
()
(
λ
_
_
,
True
))
;
first
(
intros
[
_
Hsafe
]
;
eauto
).
cut
(
adequate
NotStuck
e
()
(
λ
_
_
,
True
))
;
first
by
intros
[
_
Hsafe
]
;
eapply
Hsafe
;
eauto
.
eapply
(
wp_adequacy
Σ
_
).
iIntros
(
Hinv
?).
iModIntro
.
iExists
(
λ
_
_
,
True
%
I
),
(
λ
_
,
True
%
I
).
iSplit
=>//.
set
(
H
Σ
:
=
IrisG
_
_
Hinv
(
λ
_
_
_
,
True
)%
I
(
λ
_
,
True
)%
I
).
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment