Commit 76eb7cd1 authored by Simon Friis Vindum's avatar Simon Friis Vindum
Browse files

big_sepM_impl_strong returns leftover resources

parent 1b86cdf9
Pipeline #48614 passed with stage
in 7 minutes and 53 seconds
......@@ -1450,15 +1450,30 @@ Lemma big_sepM_sep_zip `{Countable K} {A B}
([ map] kx m1, Φ1 k x) ([ map] ky m2, Φ2 k y).
Proof. apply big_opM_sep_zip. Qed.
Lemma big_sepM_impl_foo `{Countable K} {A B} Φ `{ k x, Affine (Φ k x)}
(Ψ : K B PROP) m1 (m2 : gmap K B) :
Lemma map_filter_true_id `{Countable K} {A} (P : (K * A Prop))
`{ (x : (K * A)), Decision (P x)} (m : gmap K A)
: ( k x, m !! k = Some x P (k, x)) filter P m = m.
Proof.
intros Hi. induction m as [|i y m ? IH] using map_ind; [done|].
rewrite map_filter_insert.
- rewrite IH; [done|].
intros j ??. apply Hi. destruct (decide (i = j)); [naive_solver|].
apply lookup_insert_Some. naive_solver.
- apply Hi. by rewrite lookup_insert.
Qed.
Lemma big_sepM_impl_strong `{Countable K} {A B} Φ (Ψ : K B PROP) m1 (m2 : gmap K B) :
([ map] kx m1, Φ k x) -
( (k : K) (y : B), m2 !! k = Some y
(( (x : A), m1 !! k = Some x Φ k x) m1 !! k = None) - Ψ k y) -
[ map] ky m2, Ψ k y.
([ map] ky m2, Ψ k y)
([ map] kx (filter (λ '(k, _), m2 !! k = None) m1), Φ k x).
Proof.
revert m1. induction m2 as [|i y m ? IH] using map_ind=> m1.
- apply wand_intro_r. rewrite big_sepM_empty. apply: affine.
- apply wand_intro_r.
rewrite big_sepM_empty left_id.
rewrite intuitionistically_elim_emp right_id.
rewrite map_filter_true_id; done.
- apply wand_intro_r.
rewrite big_sepM_insert; last done.
rewrite intuitionistically_sep_dup.
......@@ -1469,40 +1484,52 @@ Proof.
+ rewrite -or_intro_l -(exist_intro x).
rewrite pure_True // left_id.
rewrite big_sepM_delete; last apply Hl.
rewrite assoc assoc wand_elim_l -assoc.
apply sep_mono_r.
specialize (IH (delete i m1)). apply wand_elim_l' in IH. rewrite -IH.
rewrite assoc assoc wand_elim_l -assoc -assoc.
apply sep_mono_r.
apply intuitionistically_intro'. rewrite intuitionistically_elim.
apply forall_intro=> k. apply forall_intro=> b.
rewrite (forall_elim k) (forall_elim b).
apply impl_intro_l, pure_elim_l=> ?.
assert (i k) by congruence.
rewrite lookup_insert_ne // pure_True // left_id.
rewrite lookup_delete_ne //.
specialize (IH (delete i m1)). apply wand_elim_l' in IH.
erewrite map_filter_strong_ext.
* erewrite <- IH.
apply sep_mono_r.
apply intuitionistically_intro'. rewrite intuitionistically_elim.
apply forall_intro=> k. apply forall_intro=> b.
rewrite (forall_elim k) (forall_elim b).
apply impl_intro_l, pure_elim_l=> ?.
assert (i k) by congruence.
rewrite lookup_insert_ne // pure_True // left_id.
rewrite lookup_delete_ne //.
* simpl.
intros j x'. destruct (decide (i = j)).
{ simplify_eq. rewrite lookup_delete lookup_insert. naive_solver. }
rewrite lookup_delete_ne // lookup_insert_ne //.
+ rewrite -or_intro_r.
rewrite impl_wand_2.
rewrite pure_True // left_id.
rewrite pure_True // left_id -assoc.
apply sep_mono_r.
specialize (IH m1). apply wand_elim_l' in IH. rewrite -IH.
apply sep_mono_r.
apply intuitionistically_intro'. rewrite intuitionistically_elim.
apply forall_intro=> k. apply forall_intro=> b.
rewrite (forall_elim k) (forall_elim b).
apply impl_intro_l, pure_elim_l=> ?.
rewrite lookup_insert_ne; last congruence.
rewrite pure_True // left_id //.
specialize (IH m1). apply wand_elim_l' in IH.
erewrite map_filter_strong_ext.
* erewrite <- IH.
apply sep_mono_r.
apply intuitionistically_intro'. rewrite intuitionistically_elim.
apply forall_intro=> k. apply forall_intro=> b.
rewrite (forall_elim k) (forall_elim b).
apply impl_intro_l, pure_elim_l=> ?.
rewrite lookup_insert_ne; last congruence.
rewrite pure_True // left_id //.
* intros i' x'. simpl.
destruct (decide (i = i')) as [?|neq]; first naive_solver.
by rewrite lookup_insert_ne.
Qed.
Lemma big_sepM_impl_dom_subseteq `{Countable K} {A B}
Φ `{ k x, Affine (Φ k x)} (Ψ : K B PROP) (m1 : gmap K A) (m2 : gmap K B) :
Φ (Ψ : K B PROP) (m1 : gmap K A) (m2 : gmap K B) :
dom (gset _) m2 dom _ m1
([ map] kx m1, Φ k x) -
( (k : K) (x : A) (y : B),
m1 !! k = Some x m2 !! k = Some y Φ k x - Ψ k y) -
[ map] ky m2, Ψ k y.
([ map] ky m2, Ψ k y)
([ map] kx (filter (λ '(k, _), m2 !! k = None) m1), Φ k x).
Proof.
intros Hsub. rewrite big_sepM_impl_foo.
intros Hsub. rewrite big_sepM_impl_strong.
apply wand_mono; last done.
apply intuitionistically_intro'. rewrite intuitionistically_elim.
apply forall_intro=> k. apply forall_intro=> y.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment