Commit 2a7833d4 authored by Dan Frumin's avatar Dan Frumin
Browse files

Add `big_sepM2_union_inv_l`.

parent 1b72a945
...@@ -1926,6 +1926,60 @@ Section map2. ...@@ -1926,6 +1926,60 @@ Section map2.
[ map] ky1;y2 m1;m2, Φ1 k y1 Φ2 k y2. [ map] ky1;y2 m1;m2, Φ1 k y1 Φ2 k y2.
Proof. intros. apply wand_intro_r. by rewrite big_sepM2_sepM. Qed. Proof. intros. apply wand_intro_r. by rewrite big_sepM2_sepM. Qed.
Lemma big_sepM2_union_inv_l (Φ : K A B PROP) (m1 m2 : gmap K A) (n : gmap K B):
m1 ## m2
([ map] kx;y (m1 m2);n, Φ k x y)
n1 n2, n = n1 n2
([ map] kx;y m1;n1, Φ k x y)
([ map] kx;y m2;n2, Φ k x y).
Proof.
pose (P := λ m1, (m2 : gmap K A) (n : gmap K B),
m1 ## m2
([ map] kx;y (m1 m2);n, Φ k x y)
- n1 n2 : gmap K B,
n = n1 n2
([ map] kx;y m1;n1, Φ k x y)
([ map] kx;y m2;n2, Φ k x y)).
revert m1 m2 n. eapply (map_ind P); unfold P; clear P.
{ intros m2 n ?. rewrite left_id.
rewrite -(exist_intro ) -(exist_intro n) left_id pure_True // left_id.
rewrite big_sepM2_empty left_id //. }
intros i x m1 Hm1 IH m2 n [Hm2i Hmm]%map_disjoint_insert_l.
eapply (pure_elim (dom (gset K) n = {[i]} dom (gset K) m1 dom (gset K) m2)).
{ rewrite big_sepM2_dom dom_union_L dom_insert_L. eapply pure_mono.
naive_solver. }
intros Hdomn.
destruct (n !! i) as [y|] eqn:Hni; last first.
{ exfalso. eapply (not_elem_of_dom n i); eauto; set_solver. }
assert (n = <[i:=y]>(delete i n)) as ->.
{ by rewrite insert_delete insert_id//. }
assert ((m1 m2) !! i = None) as Hm1m2i.
{ eapply lookup_union_None; naive_solver. }
assert (delete i n !! i = None) by eapply lookup_delete.
rewrite -insert_union_l big_sepM2_insert//.
rewrite (IH m2 (delete i n)) //.
rewrite sep_exist_l. eapply exist_elim=>n1.
rewrite sep_exist_l. eapply exist_elim=>n2.
rewrite comm. eapply wand_elim_l'.
eapply pure_elim_l=>Hn1n2.
rewrite -(exist_intro (<[i:=y]>n1)) -(exist_intro n2).
rewrite pure_True; last first.
{ rewrite Hn1n2. by rewrite insert_union_l. }
eapply (pure_elim (n1 !! i = None)).
{ rewrite big_sepM2_dom. rewrite sep_elim_l.
eapply pure_mono. intros Hfoo.
eapply not_elem_of_dom. rewrite -Hfoo.
by eapply not_elem_of_dom. }
intros Hn1. rewrite big_sepM2_insert // left_id.
eapply wand_intro_l. by rewrite assoc.
Qed.
Global Instance big_sepM2_empty_persistent Φ : Global Instance big_sepM2_empty_persistent Φ :
Persistent ([ map] ky1;y2 ; , Φ k y1 y2). Persistent ([ map] ky1;y2 ; , Φ k y1 y2).
Proof. rewrite big_sepM2_empty. apply _. Qed. Proof. rewrite big_sepM2_empty. apply _. Qed.
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment