big_op.v 117 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From stdpp Require Import countable fin_sets functions.
2
From iris.algebra Require Export big_op.
3
4
From iris.algebra Require Import list gmap.
From iris.bi Require Import derived_laws_later.
Ralf Jung's avatar
Ralf Jung committed
5
From iris.prelude Require Import options.
6
Import interface.bi derived_laws.bi derived_laws_later.bi.
7

Dan Frumin's avatar
Dan Frumin committed
8
(** Notations for unary variants *)
Ralf Jung's avatar
Ralf Jung committed
9
Notation "'[∗' 'list]' k ↦ x ∈ l , P" :=
Ralf Jung's avatar
Ralf Jung committed
10
  (big_opL bi_sep (λ k x, P%I) l) : bi_scope.
Ralf Jung's avatar
Ralf Jung committed
11
Notation "'[∗' 'list]' x ∈ l , P" :=
Ralf Jung's avatar
Ralf Jung committed
12
13
  (big_opL bi_sep (λ _ x, P%I) l) : bi_scope.
Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps%I) : bi_scope.
Ralf Jung's avatar
Ralf Jung committed
14
15

Notation "'[∧' 'list]' k ↦ x ∈ l , P" :=
Ralf Jung's avatar
Ralf Jung committed
16
  (big_opL bi_and (λ k x, P%I) l) : bi_scope.
Ralf Jung's avatar
Ralf Jung committed
17
Notation "'[∧' 'list]' x ∈ l , P" :=
Ralf Jung's avatar
Ralf Jung committed
18
19
  (big_opL bi_and (λ _ x, P%I) l) : bi_scope.
Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps%I) : bi_scope.
Ralf Jung's avatar
Ralf Jung committed
20

21
Notation "'[∨' 'list]' k ↦ x ∈ l , P" :=
Ralf Jung's avatar
Ralf Jung committed
22
  (big_opL bi_or (λ k x, P%I) l) : bi_scope.
23
Notation "'[∨' 'list]' x ∈ l , P" :=
Ralf Jung's avatar
Ralf Jung committed
24
25
  (big_opL bi_or (λ _ x, P%I) l) : bi_scope.
Notation "'[∨]' Ps" := (big_opL bi_or (λ _ x, x) Ps%I) : bi_scope.
26

Ralf Jung's avatar
Ralf Jung committed
27
28
Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P%I) m) : bi_scope.
Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P%I) m) : bi_scope.
Ralf Jung's avatar
Ralf Jung committed
29

Ralf Jung's avatar
Ralf Jung committed
30
Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P%I) X) : bi_scope.
Ralf Jung's avatar
Ralf Jung committed
31

Ralf Jung's avatar
Ralf Jung committed
32
Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P%I) X) : bi_scope.
33

Dan Frumin's avatar
Dan Frumin committed
34
35
36
37
38
39
40
41
42
43
44
45
(** Definitions and notations for binary variants *)
(** A version of the separating big operator that ranges over two lists. This
version also ensures that both lists have the same length. Although this version
can be defined in terms of the unary using a [zip] (see [big_sepL2_alt]), we do
not define it that way to get better computational behavior (for [simpl]). *)
Fixpoint big_sepL2 {PROP : bi} {A B}
    (Φ : nat  A  B  PROP) (l1 : list A) (l2 : list B) : PROP :=
  match l1, l2 with
  | [], [] => emp
  | x1 :: l1, x2 :: l2 => Φ 0 x1 x2  big_sepL2 (λ n, Φ (S n)) l1 l2
  | _, _ => False
  end%I.
46
Global Instance: Params (@big_sepL2) 3 := {}.
Ralf Jung's avatar
Ralf Jung committed
47
Global Arguments big_sepL2 {PROP A B} _ !_ !_ /.
Dan Frumin's avatar
Dan Frumin committed
48
49
Typeclasses Opaque big_sepL2.
Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P" :=
Ralf Jung's avatar
Ralf Jung committed
50
  (big_sepL2 (λ k x1 x2, P%I) l1 l2) : bi_scope.
Dan Frumin's avatar
Dan Frumin committed
51
Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P" :=
Ralf Jung's avatar
Ralf Jung committed
52
  (big_sepL2 (λ _ x1 x2, P%I) l1 l2) : bi_scope.
Dan Frumin's avatar
Dan Frumin committed
53

54
Definition big_sepM2_def {PROP : bi} `{Countable K} {A B}
Dan Frumin's avatar
Dan Frumin committed
55
56
57
    (Φ : K  A  B  PROP) (m1 : gmap K A) (m2 : gmap K B) : PROP :=
  (  k, is_Some (m1 !! k)  is_Some (m2 !! k)  
   [ map] k  xy  map_zip m1 m2, Φ k xy.1 xy.2)%I.
58
Definition big_sepM2_aux : seal (@big_sepM2_def). Proof. by eexists. Qed.
59
Definition big_sepM2 := big_sepM2_aux.(unseal).
Ralf Jung's avatar
Ralf Jung committed
60
Global Arguments big_sepM2 {PROP K _ _ A B} _ _ _.
Ralf Jung's avatar
Ralf Jung committed
61
Definition big_sepM2_eq : @big_sepM2 = _ := big_sepM2_aux.(seal_eq).
62
Global Instance: Params (@big_sepM2) 6 := {}.
Dan Frumin's avatar
Dan Frumin committed
63
Notation "'[∗' 'map]' k ↦ x1 ; x2 ∈ m1 ; m2 , P" :=
Ralf Jung's avatar
Ralf Jung committed
64
  (big_sepM2 (λ k x1 x2, P%I) m1 m2) : bi_scope.
Dan Frumin's avatar
Dan Frumin committed
65
Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" :=
Ralf Jung's avatar
Ralf Jung committed
66
  (big_sepM2 (λ _ x1 x2, P%I) m1 m2) : bi_scope.
Dan Frumin's avatar
Dan Frumin committed
67

68
(** * Properties *)
69
Section big_op.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Context {PROP : bi}.
71
Implicit Types P Q : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
Implicit Types Ps Qs : list PROP.
73
74
Implicit Types A : Type.

75
(** ** Big ops over lists *)
76
Section sep_list.
77
78
  Context {A : Type}.
  Implicit Types l : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
  Implicit Types Φ Ψ : nat  A  PROP.
80

Robbert Krebbers's avatar
Robbert Krebbers committed
81
  Lemma big_sepL_nil Φ : ([ list] ky  nil, Φ k y)  emp.
82
  Proof. done. Qed.
83
84
  Lemma big_sepL_nil' P `{!Affine P} Φ : P  [ list] ky  nil, Φ k y.
  Proof. apply: affine. Qed.
85
  Lemma big_sepL_cons Φ x l :
86
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
87
  Proof. by rewrite big_opL_cons. Qed.
88
  Lemma big_sepL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
89
90
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_sepL_app Φ l1 l2 :
91
92
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
93
  Proof. by rewrite big_opL_app. Qed.
Ralf Jung's avatar
Ralf Jung committed
94
95
96
  Lemma big_sepL_snoc Φ l x :
    ([ list] ky  l ++ [x], Φ k y)  ([ list] ky  l, Φ k y)  Φ (length l) x.
  Proof. by rewrite big_opL_snoc. Qed.
97

98
99
100
101
102
103
104
105
  Lemma big_sepL_submseteq `{BiAffine PROP} (Φ : A  PROP) l1 l2 :
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_sepL_app sep_elim_l.
  Qed.

  (** The lemmas [big_sepL_mono], [big_sepL_ne] and [big_sepL_proper] are more
  generic than the instances as they also give [l !! k = Some y] in the premise. *)
106
107
  Lemma big_sepL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
108
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
109
  Proof. apply big_opL_gen_proper; apply _. Qed.
110
111
112
113
  Lemma big_sepL_ne Φ Ψ l n :
    ( k y, l !! k = Some y  Φ k y {n} Ψ k y) 
    ([ list] k  y  l, Φ k y)%I {n} ([ list] k  y  l, Ψ k y)%I.
  Proof. apply big_opL_ne. Qed.
114
115
  Lemma big_sepL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
116
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
117
  Proof. apply big_opL_proper. Qed.
118

119
120
  (** No need to declare instances for non-expansiveness and properness, we
  get both from the generic [big_opL] instances. *)
121
122
  Global Instance big_sepL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
123
           (big_opL (@bi_sep PROP) (A:=A)).
124
  Proof. intros f g Hf m ? <-. apply big_sepL_mono; intros; apply Hf. Qed.
125
  Global Instance big_sepL_id_mono' :
126
    Proper (Forall2 () ==> ()) (big_opL (@bi_sep PROP) (λ _ P, P)).
127
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
128

129
  Lemma big_sepL_emp l : ([ list] ky  l, emp) @{PROP} emp.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
131
  Proof. by rewrite big_opL_unit. Qed.

132
  Lemma big_sepL_insert_acc Φ l i x :
133
    l !! i = Some x 
134
    ([ list] ky  l, Φ k y)  Φ i x  ( y, Φ i y - ([ list] ky  <[i:=y]>l, Φ k y)).
135
  Proof.
136
137
138
139
140
141
142
143
    intros Hli. assert (i  length l) by eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite -(take_drop_middle l i x) // big_sepL_app /=.
    rewrite Nat.add_0_r take_length_le //.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. apply sep_mono_r, forall_intro=> y.
    rewrite insert_app_r_alt ?take_length_le //.
    rewrite Nat.sub_diag /=. apply wand_intro_l.
    rewrite assoc !(comm _ (Φ _ _)) -assoc big_sepL_app /=.
    by rewrite Nat.add_0_r take_length_le.
144
145
  Qed.

146
147
148
149
150
  Lemma big_sepL_lookup_acc Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  (Φ i x - ([ list] ky  l, Φ k y)).
  Proof. intros. by rewrite {1}big_sepL_insert_acc // (forall_elim x) list_insert_id. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
151
  Lemma big_sepL_lookup Φ l i x `{!Absorbing (Φ i x)} :
152
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  Proof. intros. rewrite big_sepL_lookup_acc //. by rewrite sep_elim_l. Qed.
154

Robbert Krebbers's avatar
Robbert Krebbers committed
155
  Lemma big_sepL_elem_of (Φ : A  PROP) l x `{!Absorbing (Φ x)} :
156
    x  l  ([ list] y  l, Φ y)  Φ x.
157
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
158
    intros [i ?]%elem_of_list_lookup. by eapply (big_sepL_lookup (λ _, Φ)).
159
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
160

Robbert Krebbers's avatar
Robbert Krebbers committed
161
  Lemma big_sepL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
162
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
163
  Proof. by rewrite big_opL_fmap. Qed.
164

165
166
167
168
  Lemma big_sepL_omap {B} (f : A  option B) (Φ : B  PROP) l :
    ([ list] y  omap f l, Φ y)  ([ list] y  l, from_option Φ emp (f y)).
  Proof. by rewrite big_opL_omap. Qed.

169
170
171
172
  Lemma big_sepL_bind {B} (f : A  list B) (Φ : B  PROP) l :
    ([ list] y  l = f, Φ y)  ([ list] x  l, [ list] y  f x, Φ y).
  Proof. by rewrite big_opL_bind. Qed.

173
  Lemma big_sepL_sep Φ Ψ l :
174
175
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
176
  Proof. by rewrite big_opL_op. Qed.
177

178
179
180
  Lemma big_sepL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
181
  Proof. auto using and_intro, big_sepL_mono, and_elim_l, and_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
182

Ralf Jung's avatar
Ralf Jung committed
183
184
185
186
187
188
189
190
  Lemma big_sepL_pure_1 (φ : nat  A  Prop) l :
    ([ list] kx  l, ⌜φ k x) @{PROP}  k x, l !! k = Some x  φ k x.
  Proof.
    induction l as [|x l IH] using rev_ind.
    { apply pure_intro=>??. rewrite lookup_nil. done. }
    rewrite big_sepL_snoc // IH sep_and -pure_and.
    f_equiv=>-[Hl Hx] k y /lookup_app_Some =>-[Hy|[Hlen Hy]].
    - by apply Hl.
Ralf Jung's avatar
Ralf Jung committed
191
192
    - apply list_lookup_singleton_Some in Hy as [Hk ->].
      replace k with (length l) by lia. done.
Ralf Jung's avatar
Ralf Jung committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
  Qed.
  Lemma big_sepL_affinely_pure_2 (φ : nat  A  Prop) l :
    <affine>  k x, l !! k = Some x  φ k x @{PROP} ([ list] kx  l, <affine> ⌜φ k x).
  Proof.
    induction l as [|x l IH] using rev_ind.
    { rewrite big_sepL_nil. apply affinely_elim_emp. }
    rewrite big_sepL_snoc // -IH.
    rewrite -persistent_and_sep_1 -affinely_and -pure_and.
    f_equiv. f_equiv=>- Hlx. split.
    - intros k y Hy. apply Hlx. rewrite lookup_app Hy //.
    - apply Hlx. rewrite lookup_app lookup_ge_None_2 //.
      rewrite Nat.sub_diag //.
  Qed.
  (** The general backwards direction requires [BiAffine] to cover the empty case. *)
  Lemma big_sepL_pure `{!BiAffine PROP} (φ : nat  A  Prop) l :
    ([ list] kx  l, ⌜φ k x) @{PROP}  k x, l !! k = Some x  φ k x.
  Proof.
    apply (anti_symm ()); first by apply big_sepL_pure_1.
211
    rewrite -(affine_affinely _).
Ralf Jung's avatar
Ralf Jung committed
212
213
214
    rewrite big_sepL_affinely_pure_2. by setoid_rewrite affinely_elim.
  Qed.

215
  Lemma big_sepL_persistently `{BiAffine PROP} Φ l :
216
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
217
  Proof. apply (big_opL_commute _). Qed.
218

219
  Lemma big_sepL_intro Φ l :
220
221
222
223
224
225
226
227
228
229
     ( k x, l !! k = Some x  Φ k x)  [ list] kx  l, Φ k x.
  Proof.
    revert Φ. induction l as [|x l IH]=> Φ /=; [by apply (affine _)|].
    rewrite intuitionistically_sep_dup. f_equiv.
    - rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
      by rewrite intuitionistically_elim.
    - rewrite -IH. f_equiv.
      apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

230
  Lemma big_sepL_forall `{BiAffine PROP} Φ l :
231
    ( k x, Persistent (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
232
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
233
234
235
  Proof.
    intros HΦ. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
Robbert Krebbers's avatar
Robbert Krebbers committed
236
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepL_lookup. }
237
    rewrite -big_sepL_intro. setoid_rewrite pure_impl_forall.
238
    by rewrite intuitionistic_intuitionistically.
239
240
241
  Qed.

  Lemma big_sepL_impl Φ Ψ l :
Robbert Krebbers's avatar
Robbert Krebbers committed
242
    ([ list] kx  l, Φ k x) -
243
     ( k x, l !! k = Some x  Φ k x - Ψ k x) -
Robbert Krebbers's avatar
Robbert Krebbers committed
244
    [ list] kx  l, Ψ k x.
245
  Proof.
246
    apply wand_intro_l. rewrite big_sepL_intro -big_sepL_sep.
247
    by setoid_rewrite wand_elim_l.
248
249
  Qed.

Ralf Jung's avatar
Ralf Jung committed
250
251
252
253
254
255
256
257
258
  Lemma big_sepL_wand Φ Ψ l :
    ([ list] kx  l, Φ k x) -
    ([ list] kx  l, Φ k x - Ψ k x) -
    [ list] kx  l, Ψ k x.
  Proof.
    apply wand_intro_r. rewrite -big_sepL_sep.
    setoid_rewrite wand_elim_r. done.
  Qed.

259
  Lemma big_sepL_dup P `{!Affine P} l :
260
261
     (P - P  P) - P - [ list] kx  l, P.
  Proof.
262
263
    apply wand_intro_l.
    induction l as [|x l IH]=> /=; first by apply: affine.
264
265
266
267
    rewrite intuitionistically_sep_dup {1}intuitionistically_elim.
    rewrite assoc wand_elim_r -assoc. apply sep_mono; done.
  Qed.

268
269
  Lemma big_sepL_delete Φ l i x :
    l !! i = Some x 
270
271
    ([ list] ky  l, Φ k y) 
    Φ i x  [ list] ky  l, if decide (k = i) then emp else Φ k y.
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
  Proof.
    intros. rewrite -(take_drop_middle l i x) // !big_sepL_app /= Nat.add_0_r.
    rewrite take_length_le; last eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite decide_True // left_id.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. do 2 f_equiv.
    - apply big_sepL_proper=> k y Hk. apply lookup_lt_Some in Hk.
      rewrite take_length in Hk. by rewrite decide_False; last lia.
    - apply big_sepL_proper=> k y _. by rewrite decide_False; last lia.
  Qed.
  Lemma big_sepL_delete' `{!BiAffine PROP} Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  [ list] ky  l,  k  i   Φ k y.
  Proof.
    intros. rewrite big_sepL_delete //. (do 2 f_equiv)=> k y.
    rewrite -decide_emp. by repeat case_decide.
  Qed.

289
  Lemma big_sepL_lookup_acc_impl {Φ l} i x :
290
291
    l !! i = Some x 
    ([ list] ky  l, Φ k y) -
292
293
294
295
    (* We obtain [Φ] for [x] *)
    Φ i x 
    (* We reobtain the bigop for a predicate [Ψ] selected by the user *)
     Ψ,
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
       ( k y,  l !! k = Some y    k  i   Φ k y - Ψ k y) -
      Ψ i x -
      [ list] ky  l, Ψ k y.
  Proof.
    intros. rewrite big_sepL_delete //. apply sep_mono_r, forall_intro=> Ψ.
    apply wand_intro_r, wand_intro_l.
    rewrite (big_sepL_delete Ψ l i x) //. apply sep_mono_r.
    eapply wand_apply; [apply big_sepL_impl|apply sep_mono_r].
    apply intuitionistically_intro', forall_intro=> k; apply forall_intro=> y.
    apply impl_intro_l, pure_elim_l=> ?; apply wand_intro_r.
    rewrite (forall_elim ) (forall_elim y) pure_True // left_id.
    destruct (decide _) as [->|]; [by apply: affine|].
    by rewrite pure_True //left_id intuitionistically_elim wand_elim_l.
  Qed.

311
312
313
314
  Lemma big_sepL_replicate l P :
    [] replicate (length l) P  [ list] y  l, P.
  Proof. induction l as [|x l]=> //=; by f_equiv. Qed.

315
316
317
318
319
320
321
322
323
324
325
326
327
328
  Lemma big_sepL_later `{BiAffine PROP} Φ l :
     ([ list] kx  l, Φ k x)  ([ list] kx  l,  Φ k x).
  Proof. apply (big_opL_commute _). Qed.
  Lemma big_sepL_later_2 Φ l :
    ([ list] kx  l,  Φ k x)   [ list] kx  l, Φ k x.
  Proof. by rewrite (big_opL_commute _). Qed.

  Lemma big_sepL_laterN `{BiAffine PROP} Φ n l :
    ^n ([ list] kx  l, Φ k x)  ([ list] kx  l, ^n Φ k x).
  Proof. apply (big_opL_commute _). Qed.
  Lemma big_sepL_laterN_2 Φ n l :
    ([ list] kx  l, ^n Φ k x)  ^n [ list] kx  l, Φ k x.
  Proof. by rewrite (big_opL_commute _). Qed.

329
  Global Instance big_sepL_nil_persistent Φ :
330
    Persistent ([ list] kx  [], Φ k x).
331
  Proof. simpl; apply _. Qed.
332
  Global Instance big_sepL_persistent Φ l :
333
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
334
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
335
  Global Instance big_sepL_persistent_id Ps :
336
    TCForall Persistent Ps  Persistent ([] Ps).
337
  Proof. induction 1; simpl; apply _. Qed.
338

339
340
341
  Global Instance big_sepL_nil_affine Φ :
    Affine ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
342
343
344
  Global Instance big_sepL_affine Φ l :
    ( k x, Affine (Φ k x))  Affine ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
345
346
  Global Instance big_sepL_affine_id Ps : TCForall Affine Ps  Affine ([] Ps).
  Proof. induction 1; simpl; apply _. Qed.
347
348
349
350
351
352
353
354
355
356

  Global Instance big_sepL_nil_timeless `{!Timeless (emp%I : PROP)} Φ :
    Timeless ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL_timeless `{!Timeless (emp%I : PROP)} Φ l :
    ( k x, Timeless (Φ k x))  Timeless ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
  Global Instance big_sepL_timeless_id `{!Timeless (emp%I : PROP)} Ps :
    TCForall Timeless Ps  Timeless ([] Ps).
  Proof. induction 1; simpl; apply _. Qed.
357
End sep_list.
358

Ralf Jung's avatar
Ralf Jung committed
359
(* Some lemmas depend on the generalized versions of the above ones. *)
360
361
362
363
364
365
366
367
Lemma big_sepL_sep_zip_with {A B C} (f : A  B  C) (g1 : C  A) (g2 : C  B)
    (Φ1 : nat  A  PROP) (Φ2 : nat  B  PROP) l1 l2 :
  ( x y, g1 (f x y) = x) 
  ( x y, g2 (f x y) = y) 
  length l1 = length l2 
  ([ list] kxy  zip_with f l1 l2, Φ1 k (g1 xy)  Φ2 k (g2 xy)) 
  ([ list] kx  l1, Φ1 k x)  ([ list] ky  l2, Φ2 k y).
Proof. apply big_opL_sep_zip_with. Qed.
368

369
Lemma big_sepL_sep_zip {A B} (Φ1 : nat  A  PROP) (Φ2 : nat  B  PROP) l1 l2 :
Ralf Jung's avatar
Ralf Jung committed
370
  length l1 = length l2 
371
372
373
  ([ list] kxy  zip l1 l2, Φ1 k xy.1  Φ2 k xy.2) 
  ([ list] kx  l1, Φ1 k x)  ([ list] ky  l2, Φ2 k y).
Proof. apply big_opL_sep_zip. Qed.
Ralf Jung's avatar
Ralf Jung committed
374
375

Lemma big_sepL_zip_with {A B C} (Φ : nat  A  PROP) f (l1 : list B) (l2 : list C) :
376
377
  ([ list] kx  zip_with f l1 l2, Φ k x) 
  ([ list] kx  l1, if l2 !! k is Some y then Φ k (f x y) else emp).
Ralf Jung's avatar
Ralf Jung committed
378
379
380
381
382
Proof.
  revert Φ l2; induction l1 as [|x l1 IH]=> Φ [|y l2] //=.
  - by rewrite big_sepL_emp left_id.
  - by rewrite IH.
Qed.
383

384
(** ** Big ops over two lists *)
385
Lemma big_sepL2_alt {A B} (Φ : nat  A  B  PROP) l1 l2 :
386
387
  ([ list] ky1;y2  l1; l2, Φ k y1 y2) 
   length l1 = length l2   [ list] k  xy  zip l1 l2, Φ k (xy.1) (xy.2).
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
Proof.
  apply (anti_symm _).
  - apply and_intro.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      rewrite IH sep_elim_r. apply pure_mono; auto.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      by rewrite IH.
  - apply pure_elim_l=> /Forall2_same_length Hl. revert Φ.
    induction Hl as [|x1 l1 x2 l2 _ _ IH]=> Φ //=. by rewrite -IH.
Qed.

Section sep_list2.
  Context {A B : Type}.
  Implicit Types Φ Ψ : nat  A  B  PROP.

  Lemma big_sepL2_nil Φ : ([ list] ky1;y2  []; [], Φ k y1 y2)  emp.
  Proof. done. Qed.
407
408
  Lemma big_sepL2_nil' P `{!Affine P} Φ : P  [ list] ky1;y2  [];[], Φ k y1 y2.
  Proof. apply: affine. Qed.
Dan Frumin's avatar
Dan Frumin committed
409
410
411
412
413
414
  Lemma big_sepL2_nil_inv_l Φ l2 :
    ([ list] ky1;y2  []; l2, Φ k y1 y2) - l2 = [].
  Proof. destruct l2; simpl; auto using False_elim, pure_intro. Qed.
  Lemma big_sepL2_nil_inv_r Φ l1 :
    ([ list] ky1;y2  l1; [], Φ k y1 y2) - l1 = [].
  Proof. destruct l1; simpl; auto using False_elim, pure_intro. Qed.
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

  Lemma big_sepL2_cons Φ x1 x2 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; x2 :: l2, Φ k y1 y2)
     Φ 0 x1 x2  [ list] ky1;y2  l1;l2, Φ (S k) y1 y2.
  Proof. done. Qed.
  Lemma big_sepL2_cons_inv_l Φ x1 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; l2, Φ k y1 y2) -
     x2 l2',  l2 = x2 :: l2'  
              Φ 0 x1 x2  [ list] ky1;y2  l1;l2', Φ (S k) y1 y2.
  Proof.
    destruct l2 as [|x2 l2]; simpl; auto using False_elim.
    by rewrite -(exist_intro x2) -(exist_intro l2) pure_True // left_id.
  Qed.
  Lemma big_sepL2_cons_inv_r Φ x2 l1 l2 :
    ([ list] ky1;y2  l1; x2 :: l2, Φ k y1 y2) -
     x1 l1',  l1 = x1 :: l1'  
              Φ 0 x1 x2  [ list] ky1;y2  l1';l2, Φ (S k) y1 y2.
  Proof.
    destruct l1 as [|x1 l1]; simpl; auto using False_elim.
    by rewrite -(exist_intro x1) -(exist_intro l1) pure_True // left_id.
  Qed.

  Lemma big_sepL2_singleton Φ x1 x2 :
    ([ list] ky1;y2  [x1];[x2], Φ k y1 y2)  Φ 0 x1 x2.
  Proof. by rewrite /= right_id. Qed.

  Lemma big_sepL2_length Φ l1 l2 :
    ([ list] ky1;y2  l1; l2, Φ k y1 y2) -  length l1 = length l2 .
  Proof. by rewrite big_sepL2_alt and_elim_l. Qed.

  Lemma big_sepL2_app Φ l1 l2 l1' l2' :
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) -
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k) y1 y2) -
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2).
  Proof.
    apply wand_intro_r. revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /=.
    - by rewrite left_id.
    - rewrite left_absorb. apply False_elim.
    - rewrite left_absorb. apply False_elim.
    - by rewrite -assoc IH.
  Qed.
  Lemma big_sepL2_app_inv_l Φ l1' l1'' l2 :
    ([ list] ky1;y2  l1' ++ l1''; l2, Φ k y1 y2) -
     l2' l2'',  l2 = l2' ++ l2''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l1' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l1') l2))
      -(exist_intro (drop (length l1') l2)) take_drop pure_True // left_id.
    revert Φ l2. induction l1' as [|x1 l1' IH]=> Φ -[|x2 l2] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
  Lemma big_sepL2_app_inv_r Φ l1 l2' l2'' :
    ([ list] ky1;y2  l1; l2' ++ l2'', Φ k y1 y2) -
     l1' l1'',  l1 = l1' ++ l1''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l2' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l2') l1))
      -(exist_intro (drop (length l2') l1)) take_drop pure_True // left_id.
    revert Φ l1. induction l2' as [|x2 l2' IH]=> Φ -[|x1 l1] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
480
  Lemma big_sepL2_app_inv Φ l1 l2 l1' l2' :
481
    length l1 = length l1'  length l2 = length l2' 
482
483
484
485
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2) -
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) 
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k)%nat y1 y2).
  Proof.
486
    revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /= Hlen.
487
    - by rewrite left_id.
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    - destruct Hlen as [[=]|Hlen]. rewrite big_sepL2_length Hlen /= app_length.
      apply pure_elim'; lia.
    - destruct Hlen as [[=]|Hlen]. rewrite big_sepL2_length -Hlen /= app_length.
      apply pure_elim'; lia.
    - by rewrite -assoc IH; last lia.
  Qed.
  Lemma big_sepL2_app_same_length Φ l1 l2 l1' l2' :
    length l1 = length l1'  length l2 = length l2' 
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2) 
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) 
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k)%nat y1 y2).
  Proof.
    intros. apply (anti_symm _).
    - by apply big_sepL2_app_inv.
    - apply wand_elim_l'. apply big_sepL2_app.
503
  Qed.
504

Ralf Jung's avatar
Ralf Jung committed
505
  Lemma big_sepL2_snoc Φ x1 x2 l1 l2 :
506
507
    ([ list] ky1;y2  l1 ++ [x1]; l2 ++ [x2], Φ k y1 y2) 
    ([ list] ky1;y2  l1; l2, Φ k y1 y2)  Φ (length l1) x1 x2.
Ralf Jung's avatar
Ralf Jung committed
508
  Proof.
509
510
    rewrite big_sepL2_app_same_length; last by auto.
    by rewrite big_sepL2_singleton Nat.add_0_r.
Ralf Jung's avatar
Ralf Jung committed
511
512
  Qed.

513
514
  (** The lemmas [big_sepL2_mono], [big_sepL2_ne] and [big_sepL2_proper] are more
  generic than the instances as they also give [li !! k = Some yi] in the premise. *)
515
516
517
518
519
520
521
  Lemma big_sepL2_mono Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2].
    rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
  Qed.
522
523
524
525
526
527
528
  Lemma big_sepL2_ne Φ Ψ l1 l2 n :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2 {n} Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)%I {n} ([ list] k  y1;y2  l1;l2, Ψ k y1 y2)%I.
  Proof.
    intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_ne=> k [y1 y2].
    rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
  Qed.
529
530
531
532
533
  Lemma big_sepL2_proper Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros; apply (anti_symm _);
534
      apply big_sepL2_mono; auto using equiv_entails_1_1, equiv_entails_1_2.
535
  Qed.
536
537
538
539
540
541
542
543
544
545
546
547
548
549
  Lemma big_sepL2_proper_2 `{!Equiv A, !Equiv B} Φ Ψ l1 l2 l1' l2' :
    l1  l1'  l2  l2' 
    ( k y1 y1' y2 y2',
      l1 !! k = Some y1  l1' !! k = Some y1'  y1  y1' 
      l2 !! k = Some y2  l2' !! k = Some y2'  y2  y2' 
      Φ k y1 y2  Ψ k y1' y2') 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1';l2', Ψ k y1 y2.
  Proof.
    intros Hl1 Hl2 Hf. rewrite !big_sepL2_alt. f_equiv.
    { do 2 f_equiv; by apply length_proper. }
    apply big_opL_proper_2; [by f_equiv|].
    intros k [x1 y1] [x2 y2] (?&?&[=<- <-]&?&?)%lookup_zip_with_Some
      (?&?&[=<- <-]&?&?)%lookup_zip_with_Some [??]; naive_solver.
  Qed.
550

551
  Global Instance big_sepL2_ne' n :
552
553
554
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n)))
      ==> (=) ==> (=) ==> (dist n))
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
555
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_ne; intros; apply Hf. Qed.
556
557
558
559
560
561
562
563
564
565
566
  Global Instance big_sepL2_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_mono; intros; apply Hf. Qed.
  Global Instance big_sepL2_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_proper; intros; apply Hf. Qed.

567
568
569
570
571
572
573
574
575
576
577
578
  Lemma big_sepL2_insert_acc Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  ( y1 y2, Φ i y1 y2 - ([ list] ky1;y2  <[i:=y1]>l1;<[i:=y2]>l2, Φ k y1 y2)).
  Proof.
    intros Hl1 Hl2. rewrite big_sepL2_alt. apply pure_elim_l=> Hl.
    rewrite {1}big_sepL_insert_acc; last by rewrite lookup_zip_with; simplify_option_eq.
    apply sep_mono_r. apply forall_intro => y1. apply forall_intro => y2.
    rewrite big_sepL2_alt !insert_length pure_True // left_id -insert_zip_with.
    by rewrite (forall_elim (y1, y2)).
  Qed.

579
580
581
582
583
  Lemma big_sepL2_lookup_acc Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  (Φ i x1 x2 - ([ list] ky1;y2  l1;l2, Φ k y1 y2)).
  Proof.
584
585
    intros. rewrite {1}big_sepL2_insert_acc // (forall_elim x1) (forall_elim x2).
    by rewrite !list_insert_id.
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
  Qed.

  Lemma big_sepL2_lookup Φ l1 l2 i x1 x2 `{!Absorbing (Φ i x1 x2)} :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2)  Φ i x1 x2.
  Proof. intros. rewrite big_sepL2_lookup_acc //. by rewrite sep_elim_l. Qed.

  Lemma big_sepL2_fmap_l {A'} (f : A  A') (Φ : nat  A'  B  PROP) l1 l2 :
    ([ list] ky1;y2  f <$> l1; l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k (f y1) y2).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.
  Lemma big_sepL2_fmap_r {B'} (g : B  B') (Φ : nat  A  B'  PROP) l1 l2 :
    ([ list] ky1;y2  l1; g <$> l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 (g y2)).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.

608
609
610
611
612
613
614
615
616
617
618
  Lemma big_sepL2_reverse_2 (Φ : A  B  PROP) l1 l2 :
    ([ list] y1;y2  l1;l2, Φ y1 y2)  ([ list] y1;y2  reverse l1;reverse l2, Φ y1 y2).
  Proof.
    revert l2. induction l1 as [|x1 l1 IH]; intros [|x2 l2]; simpl; auto using False_elim.
    rewrite !reverse_cons (comm bi_sep) IH.
    by rewrite (big_sepL2_app _ _ [x1] _ [x2]) big_sepL2_singleton wand_elim_l.
  Qed.
  Lemma big_sepL2_reverse (Φ : A  B  PROP) l1 l2 :
    ([ list] y1;y2  reverse l1;reverse l2, Φ y1 y2)  ([ list] y1;y2  l1;l2, Φ y1 y2).
  Proof. apply (anti_symm _); by rewrite big_sepL2_reverse_2 ?reverse_involutive. Qed.

619
620
621
622
623
624
625
626
627
  Lemma big_sepL2_replicate_l l x Φ n :
    length l = n 
    ([ list] kx1;x2  replicate n x; l, Φ k x1 x2)  [ list] kx2  l, Φ k x x2.
  Proof. intros <-. revert Φ. induction l as [|y l IH]=> //= Φ. by rewrite IH. Qed.
  Lemma big_sepL2_replicate_r l x Φ n :
    length l = n 
    ([ list] kx1;x2  l;replicate n x, Φ k x1 x2)  [ list] kx1  l, Φ k x1 x.
  Proof. intros <-. revert Φ. induction l as [|y l IH]=> //= Φ. by rewrite IH. Qed.

628
  Lemma big_sepL2_sep Φ Ψ l1 l2 :
629
630
631
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof.
632
    rewrite !big_sepL2_alt big_sepL_sep !persistent_and_affinely_sep_l.
633
634
635
636
637
638
639
640
641
642
    rewrite -assoc (assoc _ _ (<affine> _)%I). rewrite -(comm bi_sep (<affine> _)%I).
    rewrite -assoc (assoc _ _ (<affine> _)%I) -!persistent_and_affinely_sep_l.
    by rewrite affinely_and_r persistent_and_affinely_sep_l idemp.
  Qed.

  Lemma big_sepL2_and Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof. auto using and_intro, big_sepL2_mono, and_elim_l, and_elim_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
  Lemma big_sepL2_pure_1 (φ : nat  A  B  Prop) l1 l2 :
    ([ list] ky1;y2  l1;l2, ⌜φ k y1 y2) @{PROP}
       k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  φ k y1 y2.
  Proof.
    rewrite big_sepL2_alt big_sepL_pure_1.
    rewrite -pure_and. f_equiv=>-[Hlen Hlookup] k y1 y2 Hy1 Hy2.
    eapply (Hlookup k (y1, y2)).
    rewrite lookup_zip_with Hy1 /= Hy2 /= //.
  Qed.
  Lemma big_sepL2_affinely_pure_2 (φ : nat  A  B  Prop) l1 l2 :
    length l1 = length l2 
    <affine>  k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  φ k y1 y2 @{PROP}
    ([ list] ky1;y2  l1;l2, <affine> ⌜φ k y1 y2).
  Proof.
    intros Hdom. rewrite big_sepL2_alt.
    rewrite -big_sepL_affinely_pure_2.
    rewrite affinely_and_r -pure_and. f_equiv. f_equiv=>-Hforall.
    split; first done.
    intros k [y1 y2] (? & ? & [= <- <-] & Hy1 & Hy2)%lookup_zip_with_Some.
    by eapply Hforall.
  Qed.
  (** The general backwards direction requires [BiAffine] to cover the empty case. *)
  Lemma big_sepL2_pure `{!BiAffine PROP} (φ : nat  A  B  Prop) l1 l2 :
    ([ list] ky1;y2  l1;l2, ⌜φ k y1 y2) @{PROP}
      length l1 = length l2 
        k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  φ k y1 y2.
  Proof.
    apply (anti_symm ()).
    { rewrite pure_and. apply and_intro.
      - apply big_sepL2_length.
      - apply big_sepL2_pure_1. }
    rewrite -(affine_affinely _%I).
    rewrite pure_and -affinely_and_r.
    apply pure_elim_l=>Hdom.
    rewrite big_sepL2_affinely_pure_2 //. by setoid_rewrite affinely_elim.
  Qed.

680
681
682
683
684
685
686
  Lemma big_sepL2_persistently `{BiAffine PROP} Φ l1 l2 :
    <pers> ([ list] ky1;y2  l1;l2, Φ k y1 y2)
     [ list] ky1;y2  l1;l2, <pers> (Φ k y1 y2).
  Proof.
    by rewrite !big_sepL2_alt persistently_and persistently_pure big_sepL_persistently.
  Qed.

687
  Lemma big_sepL2_intro Φ l1 l2 :
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
    length l1 = length l2 
     ( k x1 x2, l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2) 
    [ list] kx1;x2  l1;l2, Φ k x1 x2.
  Proof.
    revert l2 Φ. induction l1 as [|x1 l1 IH]=> -[|x2 l2] Φ ?; simplify_eq/=.
    { by apply (affine _). }
    rewrite intuitionistically_sep_dup. f_equiv.
    - rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2).
      by rewrite !pure_True // !True_impl intuitionistically_elim.
    - rewrite -IH //. f_equiv.
      by apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Lemma big_sepL2_forall `{BiAffine PROP} Φ l1 l2 :
    ( k x1 x2, Persistent (Φ k x1 x2)) 
    ([ list] kx1;x2  l1;l2, Φ k x1 x2) 
      length l1 = length l2
       ( k x1 x2, l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2).
  Proof.
    intros. apply (anti_symm _).
    - apply and_intro; [apply big_sepL2_length|].
      apply forall_intro=> k. apply forall_intro=> x1. apply forall_intro=> x2.
      do 2 (apply impl_intro_l; apply pure_elim_l=> ?). by apply :big_sepL2_lookup.
711
    - apply pure_elim_l=> ?. rewrite -big_sepL2_intro //.
712
713
714
715
      repeat setoid_rewrite pure_impl_forall.
      by rewrite intuitionistic_intuitionistically.
  Qed.

716
717
718
719
720
721
  Lemma big_sepL2_impl Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
     ( k x1 x2,
      l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2 - Ψ k x1 x2) -
    [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
722
    rewrite -(idemp bi_and (big_sepL2 _ _ _)) {1}big_sepL2_length.
723
    apply pure_elim_l=> ?. rewrite big_sepL2_intro //.
724
    apply bi.wand_intro_l. rewrite -big_sepL2_sep. by setoid_rewrite wand_elim_l.
725
726
  Qed.

Ralf Jung's avatar
Ralf Jung committed
727
728
729
730
731
732
733
734
735
  Lemma big_sepL2_wand Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
    ([ list] ky1;y2  l1;l2, Φ k y1 y2 - Ψ k y1 y2) -
    [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    apply wand_intro_r. rewrite -big_sepL2_sep.
    setoid_rewrite wand_elim_r. done.
  Qed.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
  Lemma big_sepL2_delete Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  [ list] ky1;y2  l1;l2, if decide (k = i) then emp else Φ k y1 y2.
  Proof.
    intros. rewrite -(take_drop_middle l1 i x1) // -(take_drop_middle l2 i x2) //.
    assert (i < length l1  i < length l2) as [??] by eauto using lookup_lt_Some.
    rewrite !big_sepL2_app_same_length /=; [|rewrite ?take_length; lia..].
    rewrite Nat.add_0_r take_length_le; [|lia].
    rewrite decide_True // left_id.
    rewrite assoc -!(comm _ (Φ _ _ _)) -assoc. do 2 f_equiv.
    - apply big_sepL2_proper=> k y1 y2 Hk. apply lookup_lt_Some in Hk.
      rewrite take_length in Hk. by rewrite decide_False; last lia.
    - apply big_sepL2_proper=> k y1 y2 _. by rewrite decide_False; last lia.
  Qed.
  Lemma big_sepL2_delete' `{!BiAffine PROP} Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  [ list] ky1;y2  l1;l2,  k  i   Φ k y1 y2.
  Proof.
    intros. rewrite big_sepL2_delete //. (do 2 f_equiv)=> k y1 y2.
    rewrite -decide_emp. by repeat case_decide.
  Qed.

760
  Lemma big_sepL2_lookup_acc_impl {Φ l1 l2} i x1 x2 :
761
762
763
    l1 !! i = Some x1 
    l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
764
765
766
767
    (* We obtain [Φ] for the [x1] and [x2] *)
    Φ i x1 x2 
    (* We reobtain the bigop for a predicate [Ψ] selected by the user *)
     Ψ,
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
       ( k y1 y2,
         l1 !! k = Some y1    l2 !! k = Some y2    k  i  
        Φ k y1 y2 - Ψ k y1 y2) -
      Ψ i x1 x2 -
      [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros. rewrite big_sepL2_delete //. apply sep_mono_r, forall_intro=> Ψ.
    apply wand_intro_r, wand_intro_l.
    rewrite (big_sepL2_delete Ψ l1 l2 i) //. apply sep_mono_r.
    eapply wand_apply; [apply big_sepL2_impl|apply sep_mono_r].
    apply intuitionistically_intro', forall_intro=> k;
      apply forall_intro=> y1; apply forall_intro=> y2.
    do 2 (apply impl_intro_l, pure_elim_l=> ?); apply wand_intro_r.
    rewrite (forall_elim k) (forall_elim y1) (forall_elim y2).
    rewrite !(pure_True (_ = Some _)) // !left_id.
    destruct (decide _) as [->|]; [by apply: affine|].
    by rewrite pure_True //left_id intuitionistically_elim wand_elim_l.
  Qed.

787
788
789
  Lemma big_sepL2_later_1 `{BiAffine PROP} Φ l1 l2 :
    ( [ list] ky1;y2  l1;l2, Φ k y1 y2)   [ list] ky1;y2  l1;l2,  Φ k y1 y2.
  Proof.
790
    rewrite !big_sepL2_alt later_and big_sepL_later (timeless  _ ).
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
    rewrite except_0_and. auto using and_mono, except_0_intro.
  Qed.

  Lemma big_sepL2_later_2 Φ l1 l2 :
    ([ list] ky1;y2  l1;l2,  Φ k y1 y2)   [ list] ky1;y2  l1;l2, Φ k y1 y2.
  Proof.
    rewrite !big_sepL2_alt later_and big_sepL_later_2.
    auto using and_mono, later_intro.
  Qed.

  Lemma big_sepL2_laterN_2 Φ n l1 l2 :
    ([ list] ky1;y2  l1;l2, ^n Φ k y1 y2)  ^n [ list] ky1;y2  l1;l2, Φ k y1 y2.
  Proof.
    rewrite !big_sepL2_alt laterN_and big_sepL_laterN_2.
    auto using and_mono, laterN_intro.
  Qed.

  Lemma big_sepL2_flip Φ l1 l2 :
    ([ list] ky1;y2  l2; l1, Φ k y2 y1)  ([ list] ky1;y2  l1; l2, Φ k y1 y2).
  Proof.
    revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2]//=; simplify_eq.
    by rewrite IH.
  Qed.

815
  Lemma big_sepL2_sepL (Φ1 : nat  A  PROP) (Φ2 : nat  B  PROP) l1 l2 :
Ralf Jung's avatar
Ralf Jung committed
816
    length l1 = length l2 
817
818
    ([ list] ky1;y2  l1;l2, Φ1 k y1  Φ2 k y2) 
    ([ list] ky1  l1, Φ1 k y1)  ([ list] ky2  l2, Φ2 k y2).
Ralf Jung's avatar
Ralf Jung committed
819
  Proof.
820
    intros. rewrite -big_sepL_sep_zip // big_sepL2_alt pure_True // left_id //.
Ralf Jung's avatar
Ralf Jung committed
821
  Qed.
822
  Lemma big_sepL2_sepL_2 (Φ1 : nat  A  PROP) (Φ2 : nat  B  PROP) l1 l2 :
823
824
825
826
    length l1 = length l2 
    ([ list] ky1  l1, Φ1 k y1) -
    ([ list] ky2  l2, Φ2 k y2) -
    [ list] ky1;y2  l1;l2, Φ1 k y1  Φ2 k y2.
827
  Proof. intros. apply wand_intro_r. by rewrite big_sepL2_sepL. Qed.
Ralf Jung's avatar
Ralf Jung committed
828

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
  Global Instance big_sepL2_nil_persistent Φ :
    Persistent ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_persistent Φ l1 l2 :
    ( k x1 x2, Persistent (Φ k x1 x2)) 
    Persistent ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.

  Global Instance big_sepL2_nil_affine Φ :
    Affine ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_affine Φ l1 l2 :
    ( k x1 x2, Affine (Φ k x1 x2)) 
    Affine ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.
844
845
846
847
848
849
850
851

  Global Instance big_sepL2_nil_timeless `{!Timeless (emp%I : PROP)} Φ :
    Timeless ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_timeless `{!Timeless (emp%I : PROP)} Φ l1 l2 :
    ( k x1 x2, Timeless (Φ k x1 x2)) 
    Timeless