big_op.v 95.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From stdpp Require Import countable fin_sets functions.
2
From iris.algebra Require Export big_op.
3
4
From iris.algebra Require Import list gmap.
From iris.bi Require Import derived_laws_later.
Ralf Jung's avatar
Ralf Jung committed
5
From iris.prelude Require Import options.
6
Import interface.bi derived_laws.bi derived_laws_later.bi.
7

Dan Frumin's avatar
Dan Frumin committed
8
(** Notations for unary variants *)
Ralf Jung's avatar
Ralf Jung committed
9
10
11
12
13
14
15
16
17
18
19
20
Notation "'[∗' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_sep (λ k x, P) l) : bi_scope.
Notation "'[∗' 'list]' x ∈ l , P" :=
  (big_opL bi_sep (λ _ x, P) l) : bi_scope.
Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps) : bi_scope.

Notation "'[∧' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_and (λ k x, P) l) : bi_scope.
Notation "'[∧' 'list]' x ∈ l , P" :=
  (big_opL bi_and (λ _ x, P) l) : bi_scope.
Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps) : bi_scope.

21
22
23
24
25
26
Notation "'[∨' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_or (λ k x, P) l) : bi_scope.
Notation "'[∨' 'list]' x ∈ l , P" :=
  (big_opL bi_or (λ _ x, P) l) : bi_scope.
Notation "'[∨]' Ps" := (big_opL bi_or (λ _ x, x) Ps) : bi_scope.

Ralf Jung's avatar
Ralf Jung committed
27
28
29
30
31
32
Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P) m) : bi_scope.
Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P) m) : bi_scope.

Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P) X) : bi_scope.

Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) : bi_scope.
33

Dan Frumin's avatar
Dan Frumin committed
34
35
36
37
38
39
40
41
42
43
44
45
(** Definitions and notations for binary variants *)
(** A version of the separating big operator that ranges over two lists. This
version also ensures that both lists have the same length. Although this version
can be defined in terms of the unary using a [zip] (see [big_sepL2_alt]), we do
not define it that way to get better computational behavior (for [simpl]). *)
Fixpoint big_sepL2 {PROP : bi} {A B}
    (Φ : nat  A  B  PROP) (l1 : list A) (l2 : list B) : PROP :=
  match l1, l2 with
  | [], [] => emp
  | x1 :: l1, x2 :: l2 => Φ 0 x1 x2  big_sepL2 (λ n, Φ (S n)) l1 l2
  | _, _ => False
  end%I.
46
Global Instance: Params (@big_sepL2) 3 := {}.
Ralf Jung's avatar
Ralf Jung committed
47
Global Arguments big_sepL2 {PROP A B} _ !_ !_ /.
Dan Frumin's avatar
Dan Frumin committed
48
49
50
51
52
53
Typeclasses Opaque big_sepL2.
Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P" :=
  (big_sepL2 (λ k x1 x2, P) l1 l2) : bi_scope.
Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P" :=
  (big_sepL2 (λ _ x1 x2, P) l1 l2) : bi_scope.

54
Definition big_sepM2_def {PROP : bi} `{Countable K} {A B}
Dan Frumin's avatar
Dan Frumin committed
55
56
57
    (Φ : K  A  B  PROP) (m1 : gmap K A) (m2 : gmap K B) : PROP :=
  (  k, is_Some (m1 !! k)  is_Some (m2 !! k)  
   [ map] k  xy  map_zip m1 m2, Φ k xy.1 xy.2)%I.
58
Definition big_sepM2_aux : seal (@big_sepM2_def). Proof. by eexists. Qed.
59
Definition big_sepM2 := big_sepM2_aux.(unseal).
Ralf Jung's avatar
Ralf Jung committed
60
Global Arguments big_sepM2 {PROP K _ _ A B} _ _ _.
Ralf Jung's avatar
Ralf Jung committed
61
Definition big_sepM2_eq : @big_sepM2 = _ := big_sepM2_aux.(seal_eq).
62
Global Instance: Params (@big_sepM2) 6 := {}.
Dan Frumin's avatar
Dan Frumin committed
63
64
65
66
67
Notation "'[∗' 'map]' k ↦ x1 ; x2 ∈ m1 ; m2 , P" :=
  (big_sepM2 (λ k x1 x2, P) m1 m2) : bi_scope.
Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" :=
  (big_sepM2 (λ _ x1 x2, P) m1 m2) : bi_scope.

68
(** * Properties *)
69
Section big_op.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Context {PROP : bi}.
71
Implicit Types P Q : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
Implicit Types Ps Qs : list PROP.
73
74
Implicit Types A : Type.

75
(** ** Big ops over lists *)
76
Section sep_list.
77
78
  Context {A : Type}.
  Implicit Types l : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
  Implicit Types Φ Ψ : nat  A  PROP.
80

Robbert Krebbers's avatar
Robbert Krebbers committed
81
  Lemma big_sepL_nil Φ : ([ list] ky  nil, Φ k y)  emp.
82
  Proof. done. Qed.
83
84
  Lemma big_sepL_nil' P `{!Affine P} Φ : P  [ list] ky  nil, Φ k y.
  Proof. apply: affine. Qed.
85
  Lemma big_sepL_cons Φ x l :
86
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
87
  Proof. by rewrite big_opL_cons. Qed.
88
  Lemma big_sepL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
89
90
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_sepL_app Φ l1 l2 :
91
92
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
93
  Proof. by rewrite big_opL_app. Qed.
Ralf Jung's avatar
Ralf Jung committed
94
95
96
  Lemma big_sepL_snoc Φ l x :
    ([ list] ky  l ++ [x], Φ k y)  ([ list] ky  l, Φ k y)  Φ (length l) x.
  Proof. by rewrite big_opL_snoc. Qed.
97

98
99
100
101
102
103
104
105
  Lemma big_sepL_submseteq `{BiAffine PROP} (Φ : A  PROP) l1 l2 :
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_sepL_app sep_elim_l.
  Qed.

  (** The lemmas [big_sepL_mono], [big_sepL_ne] and [big_sepL_proper] are more
  generic than the instances as they also give [l !! k = Some y] in the premise. *)
106
107
  Lemma big_sepL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
108
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
109
  Proof. apply big_opL_gen_proper; apply _. Qed.
110
111
112
113
  Lemma big_sepL_ne Φ Ψ l n :
    ( k y, l !! k = Some y  Φ k y {n} Ψ k y) 
    ([ list] k  y  l, Φ k y)%I {n} ([ list] k  y  l, Ψ k y)%I.
  Proof. apply big_opL_ne. Qed.
114
115
  Lemma big_sepL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
116
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
117
  Proof. apply big_opL_proper. Qed.
118

119
120
  (** No need to declare instances for non-expansiveness and properness, we
  get both from the generic [big_opL] instances. *)
121
122
  Global Instance big_sepL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
123
           (big_opL (@bi_sep PROP) (A:=A)).
124
  Proof. intros f g Hf m ? <-. apply big_sepL_mono; intros; apply Hf. Qed.
125
  Global Instance big_sepL_id_mono' :
126
    Proper (Forall2 () ==> ()) (big_opL (@bi_sep PROP) (λ _ P, P)).
127
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
128

129
  Lemma big_sepL_emp l : ([ list] ky  l, emp) @{PROP} emp.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
131
  Proof. by rewrite big_opL_unit. Qed.

132
  Lemma big_sepL_insert_acc Φ l i x :
133
    l !! i = Some x 
134
    ([ list] ky  l, Φ k y)  Φ i x  ( y, Φ i y - ([ list] ky  <[i:=y]>l, Φ k y)).
135
  Proof.
136
137
138
139
140
141
142
143
    intros Hli. assert (i  length l) by eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite -(take_drop_middle l i x) // big_sepL_app /=.
    rewrite Nat.add_0_r take_length_le //.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. apply sep_mono_r, forall_intro=> y.
    rewrite insert_app_r_alt ?take_length_le //.
    rewrite Nat.sub_diag /=. apply wand_intro_l.
    rewrite assoc !(comm _ (Φ _ _)) -assoc big_sepL_app /=.
    by rewrite Nat.add_0_r take_length_le.
144
145
  Qed.

146
147
148
149
150
  Lemma big_sepL_lookup_acc Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  (Φ i x - ([ list] ky  l, Φ k y)).
  Proof. intros. by rewrite {1}big_sepL_insert_acc // (forall_elim x) list_insert_id. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
151
  Lemma big_sepL_lookup Φ l i x `{!Absorbing (Φ i x)} :
152
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  Proof. intros. rewrite big_sepL_lookup_acc //. by rewrite sep_elim_l. Qed.
154

Robbert Krebbers's avatar
Robbert Krebbers committed
155
  Lemma big_sepL_elem_of (Φ : A  PROP) l x `{!Absorbing (Φ x)} :
156
    x  l  ([ list] y  l, Φ y)  Φ x.
157
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
158
    intros [i ?]%elem_of_list_lookup. by eapply (big_sepL_lookup (λ _, Φ)).
159
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
160

Robbert Krebbers's avatar
Robbert Krebbers committed
161
  Lemma big_sepL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
162
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
163
  Proof. by rewrite big_opL_fmap. Qed.
164

165
166
167
168
  Lemma big_sepL_omap {B} (f : A  option B) (Φ : B  PROP) l :
    ([ list] y  omap f l, Φ y)  ([ list] y  l, from_option Φ emp (f y)).
  Proof. by rewrite big_opL_omap. Qed.

169
170
171
172
  Lemma big_sepL_bind {B} (f : A  list B) (Φ : B  PROP) l :
    ([ list] y  l = f, Φ y)  ([ list] x  l, [ list] y  f x, Φ y).
  Proof. by rewrite big_opL_bind. Qed.

173
  Lemma big_sepL_sep Φ Ψ l :
174
175
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
176
  Proof. by rewrite big_opL_op. Qed.
177

178
179
180
  Lemma big_sepL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
181
  Proof. auto using and_intro, big_sepL_mono, and_elim_l, and_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
182

183
  Lemma big_sepL_persistently `{BiAffine PROP} Φ l :
184
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
185
  Proof. apply (big_opL_commute _). Qed.
186

187
188
189
190
191
192
193
194
195
196
197
  Lemma big_sepL_intuitionistically_forall Φ l :
     ( k x, l !! k = Some x  Φ k x)  [ list] kx  l, Φ k x.
  Proof.
    revert Φ. induction l as [|x l IH]=> Φ /=; [by apply (affine _)|].
    rewrite intuitionistically_sep_dup. f_equiv.
    - rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
      by rewrite intuitionistically_elim.
    - rewrite -IH. f_equiv.
      apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

198
  Lemma big_sepL_forall `{BiAffine PROP} Φ l :
199
    ( k x, Persistent (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
200
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
201
202
203
  Proof.
    intros HΦ. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
Robbert Krebbers's avatar
Robbert Krebbers committed
204
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepL_lookup. }
205
206
    rewrite -big_sepL_intuitionistically_forall. setoid_rewrite pure_impl_forall.
    by rewrite intuitionistic_intuitionistically.
207
208
209
  Qed.

  Lemma big_sepL_impl Φ Ψ l :
Robbert Krebbers's avatar
Robbert Krebbers committed
210
    ([ list] kx  l, Φ k x) -
211
     ( k x, l !! k = Some x  Φ k x - Ψ k x) -
Robbert Krebbers's avatar
Robbert Krebbers committed
212
    [ list] kx  l, Ψ k x.
213
  Proof.
214
215
    apply wand_intro_l. rewrite big_sepL_intuitionistically_forall -big_sepL_sep.
    by setoid_rewrite wand_elim_l.
216
217
  Qed.

Ralf Jung's avatar
Ralf Jung committed
218
219
220
221
222
223
224
225
226
  Lemma big_sepL_wand Φ Ψ l :
    ([ list] kx  l, Φ k x) -
    ([ list] kx  l, Φ k x - Ψ k x) -
    [ list] kx  l, Ψ k x.
  Proof.
    apply wand_intro_r. rewrite -big_sepL_sep.
    setoid_rewrite wand_elim_r. done.
  Qed.

227
  Lemma big_sepL_dup P `{!Affine P} l :
228
229
     (P - P  P) - P - [ list] kx  l, P.
  Proof.
230
231
    apply wand_intro_l.
    induction l as [|x l IH]=> /=; first by apply: affine.
232
233
234
235
    rewrite intuitionistically_sep_dup {1}intuitionistically_elim.
    rewrite assoc wand_elim_r -assoc. apply sep_mono; done.
  Qed.

236
237
  Lemma big_sepL_delete Φ l i x :
    l !! i = Some x 
238
239
    ([ list] ky  l, Φ k y) 
    Φ i x  [ list] ky  l, if decide (k = i) then emp else Φ k y.
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  Proof.
    intros. rewrite -(take_drop_middle l i x) // !big_sepL_app /= Nat.add_0_r.
    rewrite take_length_le; last eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite decide_True // left_id.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. do 2 f_equiv.
    - apply big_sepL_proper=> k y Hk. apply lookup_lt_Some in Hk.
      rewrite take_length in Hk. by rewrite decide_False; last lia.
    - apply big_sepL_proper=> k y _. by rewrite decide_False; last lia.
  Qed.
  Lemma big_sepL_delete' `{!BiAffine PROP} Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  [ list] ky  l,  k  i   Φ k y.
  Proof.
    intros. rewrite big_sepL_delete //. (do 2 f_equiv)=> k y.
    rewrite -decide_emp. by repeat case_decide.
  Qed.

257
  Lemma big_sepL_lookup_acc_impl {Φ l} i x :
258
259
    l !! i = Some x 
    ([ list] ky  l, Φ k y) -
260
261
262
263
    (* We obtain [Φ] for [x] *)
    Φ i x 
    (* We reobtain the bigop for a predicate [Ψ] selected by the user *)
     Ψ,
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
       ( k y,  l !! k = Some y    k  i   Φ k y - Ψ k y) -
      Ψ i x -
      [ list] ky  l, Ψ k y.
  Proof.
    intros. rewrite big_sepL_delete //. apply sep_mono_r, forall_intro=> Ψ.
    apply wand_intro_r, wand_intro_l.
    rewrite (big_sepL_delete Ψ l i x) //. apply sep_mono_r.
    eapply wand_apply; [apply big_sepL_impl|apply sep_mono_r].
    apply intuitionistically_intro', forall_intro=> k; apply forall_intro=> y.
    apply impl_intro_l, pure_elim_l=> ?; apply wand_intro_r.
    rewrite (forall_elim ) (forall_elim y) pure_True // left_id.
    destruct (decide _) as [->|]; [by apply: affine|].
    by rewrite pure_True //left_id intuitionistically_elim wand_elim_l.
  Qed.

279
280
281
282
  Lemma big_sepL_replicate l P :
    [] replicate (length l) P  [ list] y  l, P.
  Proof. induction l as [|x l]=> //=; by f_equiv. Qed.

283
284
285
286
287
288
289
290
291
292
293
294
295
296
  Lemma big_sepL_later `{BiAffine PROP} Φ l :
     ([ list] kx  l, Φ k x)  ([ list] kx  l,  Φ k x).
  Proof. apply (big_opL_commute _). Qed.
  Lemma big_sepL_later_2 Φ l :
    ([ list] kx  l,  Φ k x)   [ list] kx  l, Φ k x.
  Proof. by rewrite (big_opL_commute _). Qed.

  Lemma big_sepL_laterN `{BiAffine PROP} Φ n l :
    ^n ([ list] kx  l, Φ k x)  ([ list] kx  l, ^n Φ k x).
  Proof. apply (big_opL_commute _). Qed.
  Lemma big_sepL_laterN_2 Φ n l :
    ([ list] kx  l, ^n Φ k x)  ^n [ list] kx  l, Φ k x.
  Proof. by rewrite (big_opL_commute _). Qed.

297
  Global Instance big_sepL_nil_persistent Φ :
298
    Persistent ([ list] kx  [], Φ k x).
299
  Proof. simpl; apply _. Qed.
300
  Global Instance big_sepL_persistent Φ l :
301
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
302
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
303
  Global Instance big_sepL_persistent_id Ps :
304
    TCForall Persistent Ps  Persistent ([] Ps).
305
  Proof. induction 1; simpl; apply _. Qed.
306

307
308
309
  Global Instance big_sepL_nil_affine Φ :
    Affine ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
310
311
312
  Global Instance big_sepL_affine Φ l :
    ( k x, Affine (Φ k x))  Affine ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
313
314
  Global Instance big_sepL_affine_id Ps : TCForall Affine Ps  Affine ([] Ps).
  Proof. induction 1; simpl; apply _. Qed.
315
316
317
318
319
320
321
322
323
324

  Global Instance big_sepL_nil_timeless `{!Timeless (emp%I : PROP)} Φ :
    Timeless ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL_timeless `{!Timeless (emp%I : PROP)} Φ l :
    ( k x, Timeless (Φ k x))  Timeless ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
  Global Instance big_sepL_timeless_id `{!Timeless (emp%I : PROP)} Ps :
    TCForall Timeless Ps  Timeless ([] Ps).
  Proof. induction 1; simpl; apply _. Qed.
325
End sep_list.
326

Ralf Jung's avatar
Ralf Jung committed
327
(* Some lemmas depend on the generalized versions of the above ones. *)
328
329
330
331
332
333
334
335
Lemma big_sepL_sep_zip_with {A B C} (f : A  B  C) (g1 : C  A) (g2 : C  B)
    (Φ1 : nat  A  PROP) (Φ2 : nat  B  PROP) l1 l2 :
  ( x y, g1 (f x y) = x) 
  ( x y, g2 (f x y) = y) 
  length l1 = length l2 
  ([ list] kxy  zip_with f l1 l2, Φ1 k (g1 xy)  Φ2 k (g2 xy)) 
  ([ list] kx  l1, Φ1 k x)  ([ list] ky  l2, Φ2 k y).
Proof. apply big_opL_sep_zip_with. Qed.
336

337
Lemma big_sepL_sep_zip {A B} (Φ1 : nat  A  PROP) (Φ2 : nat  B  PROP) l1 l2 :
Ralf Jung's avatar
Ralf Jung committed
338
  length l1 = length l2 
339
340
341
  ([ list] kxy  zip l1 l2, Φ1 k xy.1  Φ2 k xy.2) 
  ([ list] kx  l1, Φ1 k x)  ([ list] ky  l2, Φ2 k y).
Proof. apply big_opL_sep_zip. Qed.
Ralf Jung's avatar
Ralf Jung committed
342
343

Lemma big_sepL_zip_with {A B C} (Φ : nat  A  PROP) f (l1 : list B) (l2 : list C) :
344
345
  ([ list] kx  zip_with f l1 l2, Φ k x) 
  ([ list] kx  l1, if l2 !! k is Some y then Φ k (f x y) else emp).
Ralf Jung's avatar
Ralf Jung committed
346
347
348
349
350
Proof.
  revert Φ l2; induction l1 as [|x l1 IH]=> Φ [|y l2] //=.
  - by rewrite big_sepL_emp left_id.
  - by rewrite IH.
Qed.
351

352
(** ** Big ops over two lists *)
353
Lemma big_sepL2_alt {A B} (Φ : nat  A  B  PROP) l1 l2 :
354
355
  ([ list] ky1;y2  l1; l2, Φ k y1 y2) 
   length l1 = length l2   [ list] k  xy  zip l1 l2, Φ k (xy.1) (xy.2).
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
Proof.
  apply (anti_symm _).
  - apply and_intro.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      rewrite IH sep_elim_r. apply pure_mono; auto.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      by rewrite IH.
  - apply pure_elim_l=> /Forall2_same_length Hl. revert Φ.
    induction Hl as [|x1 l1 x2 l2 _ _ IH]=> Φ //=. by rewrite -IH.
Qed.

Section sep_list2.
  Context {A B : Type}.
  Implicit Types Φ Ψ : nat  A  B  PROP.

  Lemma big_sepL2_nil Φ : ([ list] ky1;y2  []; [], Φ k y1 y2)  emp.
  Proof. done. Qed.
375
376
  Lemma big_sepL2_nil' P `{!Affine P} Φ : P  [ list] ky1;y2  [];[], Φ k y1 y2.
  Proof. apply: affine. Qed.
Dan Frumin's avatar
Dan Frumin committed
377
378
379
380
381
382
  Lemma big_sepL2_nil_inv_l Φ l2 :
    ([ list] ky1;y2  []; l2, Φ k y1 y2) - l2 = [].
  Proof. destruct l2; simpl; auto using False_elim, pure_intro. Qed.
  Lemma big_sepL2_nil_inv_r Φ l1 :
    ([ list] ky1;y2  l1; [], Φ k y1 y2) - l1 = [].
  Proof. destruct l1; simpl; auto using False_elim, pure_intro. Qed.
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

  Lemma big_sepL2_cons Φ x1 x2 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; x2 :: l2, Φ k y1 y2)
     Φ 0 x1 x2  [ list] ky1;y2  l1;l2, Φ (S k) y1 y2.
  Proof. done. Qed.
  Lemma big_sepL2_cons_inv_l Φ x1 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; l2, Φ k y1 y2) -
     x2 l2',  l2 = x2 :: l2'  
              Φ 0 x1 x2  [ list] ky1;y2  l1;l2', Φ (S k) y1 y2.
  Proof.
    destruct l2 as [|x2 l2]; simpl; auto using False_elim.
    by rewrite -(exist_intro x2) -(exist_intro l2) pure_True // left_id.
  Qed.
  Lemma big_sepL2_cons_inv_r Φ x2 l1 l2 :
    ([ list] ky1;y2  l1; x2 :: l2, Φ k y1 y2) -
     x1 l1',  l1 = x1 :: l1'  
              Φ 0 x1 x2  [ list] ky1;y2  l1';l2, Φ (S k) y1 y2.
  Proof.
    destruct l1 as [|x1 l1]; simpl; auto using False_elim.
    by rewrite -(exist_intro x1) -(exist_intro l1) pure_True // left_id.
  Qed.

  Lemma big_sepL2_singleton Φ x1 x2 :
    ([ list] ky1;y2  [x1];[x2], Φ k y1 y2)  Φ 0 x1 x2.
  Proof. by rewrite /= right_id. Qed.

  Lemma big_sepL2_length Φ l1 l2 :
    ([ list] ky1;y2  l1; l2, Φ k y1 y2) -  length l1 = length l2 .
  Proof. by rewrite big_sepL2_alt and_elim_l. Qed.

  Lemma big_sepL2_app Φ l1 l2 l1' l2' :
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) -
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k) y1 y2) -
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2).
  Proof.
    apply wand_intro_r. revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /=.
    - by rewrite left_id.
    - rewrite left_absorb. apply False_elim.
    - rewrite left_absorb. apply False_elim.
    - by rewrite -assoc IH.
  Qed.
  Lemma big_sepL2_app_inv_l Φ l1' l1'' l2 :
    ([ list] ky1;y2  l1' ++ l1''; l2, Φ k y1 y2) -
     l2' l2'',  l2 = l2' ++ l2''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l1' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l1') l2))
      -(exist_intro (drop (length l1') l2)) take_drop pure_True // left_id.
    revert Φ l2. induction l1' as [|x1 l1' IH]=> Φ -[|x2 l2] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
  Lemma big_sepL2_app_inv_r Φ l1 l2' l2'' :
    ([ list] ky1;y2  l1; l2' ++ l2'', Φ k y1 y2) -
     l1' l1'',  l1 = l1' ++ l1''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l2' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l2') l1))
      -(exist_intro (drop (length l2') l1)) take_drop pure_True // left_id.
    revert Φ l1. induction l2' as [|x2 l2' IH]=> Φ -[|x1 l1] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
448
  Lemma big_sepL2_app_inv Φ l1 l2 l1' l2' :
449
    length l1 = length l1'  length l2 = length l2' 
450
451
452
453
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2) -
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) 
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k)%nat y1 y2).
  Proof.
454
    revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /= Hlen.
455
    - by rewrite left_id.
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    - destruct Hlen as [[=]|Hlen]. rewrite big_sepL2_length Hlen /= app_length.
      apply pure_elim'; lia.
    - destruct Hlen as [[=]|Hlen]. rewrite big_sepL2_length -Hlen /= app_length.
      apply pure_elim'; lia.
    - by rewrite -assoc IH; last lia.
  Qed.
  Lemma big_sepL2_app_same_length Φ l1 l2 l1' l2' :
    length l1 = length l1'  length l2 = length l2' 
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2) 
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) 
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k)%nat y1 y2).
  Proof.
    intros. apply (anti_symm _).
    - by apply big_sepL2_app_inv.
    - apply wand_elim_l'. apply big_sepL2_app.
471
  Qed.
472

Ralf Jung's avatar
Ralf Jung committed
473
  Lemma big_sepL2_snoc Φ x1 x2 l1 l2 :
474
475
    ([ list] ky1;y2  l1 ++ [x1]; l2 ++ [x2], Φ k y1 y2) 
    ([ list] ky1;y2  l1; l2, Φ k y1 y2)  Φ (length l1) x1 x2.
Ralf Jung's avatar
Ralf Jung committed
476
  Proof.
477
478
    rewrite big_sepL2_app_same_length; last by auto.
    by rewrite big_sepL2_singleton Nat.add_0_r.
Ralf Jung's avatar
Ralf Jung committed
479
480
  Qed.

481
482
  (** The lemmas [big_sepL2_mono], [big_sepL2_ne] and [big_sepL2_proper] are more
  generic than the instances as they also give [li !! k = Some yi] in the premise. *)
483
484
485
486
487
488
489
  Lemma big_sepL2_mono Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2].
    rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
  Qed.
490
491
492
493
494
495
496
  Lemma big_sepL2_ne Φ Ψ l1 l2 n :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2 {n} Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)%I {n} ([ list] k  y1;y2  l1;l2, Ψ k y1 y2)%I.
  Proof.
    intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_ne=> k [y1 y2].
    rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
  Qed.
497
498
499
500
501
  Lemma big_sepL2_proper Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros; apply (anti_symm _);
502
      apply big_sepL2_mono; auto using equiv_entails_1_1, equiv_entails_1_2.
503
  Qed.
504
505
506
507
508
509
510
511
512
513
514
515
516
517
  Lemma big_sepL2_proper_2 `{!Equiv A, !Equiv B} Φ Ψ l1 l2 l1' l2' :
    l1  l1'  l2  l2' 
    ( k y1 y1' y2 y2',
      l1 !! k = Some y1  l1' !! k = Some y1'  y1  y1' 
      l2 !! k = Some y2  l2' !! k = Some y2'  y2  y2' 
      Φ k y1 y2  Ψ k y1' y2') 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1';l2', Ψ k y1 y2.
  Proof.
    intros Hl1 Hl2 Hf. rewrite !big_sepL2_alt. f_equiv.
    { do 2 f_equiv; by apply length_proper. }
    apply big_opL_proper_2; [by f_equiv|].
    intros k [x1 y1] [x2 y2] (?&?&[=<- <-]&?&?)%lookup_zip_with_Some
      (?&?&[=<- <-]&?&?)%lookup_zip_with_Some [??]; naive_solver.
  Qed.
518

519
  Global Instance big_sepL2_ne' n :
520
521
522
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n)))
      ==> (=) ==> (=) ==> (dist n))
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
523
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_ne; intros; apply Hf. Qed.
524
525
526
527
528
529
530
531
532
533
534
  Global Instance big_sepL2_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_mono; intros; apply Hf. Qed.
  Global Instance big_sepL2_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_proper; intros; apply Hf. Qed.

535
536
537
538
539
540
541
542
543
544
545
546
  Lemma big_sepL2_insert_acc Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  ( y1 y2, Φ i y1 y2 - ([ list] ky1;y2  <[i:=y1]>l1;<[i:=y2]>l2, Φ k y1 y2)).
  Proof.
    intros Hl1 Hl2. rewrite big_sepL2_alt. apply pure_elim_l=> Hl.
    rewrite {1}big_sepL_insert_acc; last by rewrite lookup_zip_with; simplify_option_eq.
    apply sep_mono_r. apply forall_intro => y1. apply forall_intro => y2.
    rewrite big_sepL2_alt !insert_length pure_True // left_id -insert_zip_with.
    by rewrite (forall_elim (y1, y2)).
  Qed.

547
548
549
550
551
  Lemma big_sepL2_lookup_acc Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  (Φ i x1 x2 - ([ list] ky1;y2  l1;l2, Φ k y1 y2)).
  Proof.
552
553
    intros. rewrite {1}big_sepL2_insert_acc // (forall_elim x1) (forall_elim x2).
    by rewrite !list_insert_id.
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
  Qed.

  Lemma big_sepL2_lookup Φ l1 l2 i x1 x2 `{!Absorbing (Φ i x1 x2)} :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2)  Φ i x1 x2.
  Proof. intros. rewrite big_sepL2_lookup_acc //. by rewrite sep_elim_l. Qed.

  Lemma big_sepL2_fmap_l {A'} (f : A  A') (Φ : nat  A'  B  PROP) l1 l2 :
    ([ list] ky1;y2  f <$> l1; l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k (f y1) y2).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.
  Lemma big_sepL2_fmap_r {B'} (g : B  B') (Φ : nat  A  B'  PROP) l1 l2 :
    ([ list] ky1;y2  l1; g <$> l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 (g y2)).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.

576
577
578
579
580
581
582
583
584
585
586
  Lemma big_sepL2_reverse_2 (Φ : A  B  PROP) l1 l2 :
    ([ list] y1;y2  l1;l2, Φ y1 y2)  ([ list] y1;y2  reverse l1;reverse l2, Φ y1 y2).
  Proof.
    revert l2. induction l1 as [|x1 l1 IH]; intros [|x2 l2]; simpl; auto using False_elim.
    rewrite !reverse_cons (comm bi_sep) IH.
    by rewrite (big_sepL2_app _ _ [x1] _ [x2]) big_sepL2_singleton wand_elim_l.
  Qed.
  Lemma big_sepL2_reverse (Φ : A  B  PROP) l1 l2 :
    ([ list] y1;y2  reverse l1;reverse l2, Φ y1 y2)  ([ list] y1;y2  l1;l2, Φ y1 y2).
  Proof. apply (anti_symm _); by rewrite big_sepL2_reverse_2 ?reverse_involutive. Qed.

587
588
589
590
591
592
593
594
595
  Lemma big_sepL2_replicate_l l x Φ n :
    length l = n 
    ([ list] kx1;x2  replicate n x; l, Φ k x1 x2)  [ list] kx2  l, Φ k x x2.
  Proof. intros <-. revert Φ. induction l as [|y l IH]=> //= Φ. by rewrite IH. Qed.
  Lemma big_sepL2_replicate_r l x Φ n :
    length l = n 
    ([ list] kx1;x2  l;replicate n x, Φ k x1 x2)  [ list] kx1  l, Φ k x1 x.
  Proof. intros <-. revert Φ. induction l as [|y l IH]=> //= Φ. by rewrite IH. Qed.

596
  Lemma big_sepL2_sep Φ Ψ l1 l2 :
597
598
599
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof.
600
    rewrite !big_sepL2_alt big_sepL_sep !persistent_and_affinely_sep_l.
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    rewrite -assoc (assoc _ _ (<affine> _)%I). rewrite -(comm bi_sep (<affine> _)%I).
    rewrite -assoc (assoc _ _ (<affine> _)%I) -!persistent_and_affinely_sep_l.
    by rewrite affinely_and_r persistent_and_affinely_sep_l idemp.
  Qed.

  Lemma big_sepL2_and Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof. auto using and_intro, big_sepL2_mono, and_elim_l, and_elim_r. Qed.

  Lemma big_sepL2_persistently `{BiAffine PROP} Φ l1 l2 :
    <pers> ([ list] ky1;y2  l1;l2, Φ k y1 y2)
     [ list] ky1;y2  l1;l2, <pers> (Φ k y1 y2).
  Proof.
    by rewrite !big_sepL2_alt persistently_and persistently_pure big_sepL_persistently.
  Qed.

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
  Lemma big_sepL2_intuitionistically_forall Φ l1 l2 :
    length l1 = length l2 
     ( k x1 x2, l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2) 
    [ list] kx1;x2  l1;l2, Φ k x1 x2.
  Proof.
    revert l2 Φ. induction l1 as [|x1 l1 IH]=> -[|x2 l2] Φ ?; simplify_eq/=.
    { by apply (affine _). }
    rewrite intuitionistically_sep_dup. f_equiv.
    - rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2).
      by rewrite !pure_True // !True_impl intuitionistically_elim.
    - rewrite -IH //. f_equiv.
      by apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Lemma big_sepL2_forall `{BiAffine PROP} Φ l1 l2 :
    ( k x1 x2, Persistent (Φ k x1 x2)) 
    ([ list] kx1;x2  l1;l2, Φ k x1 x2) 
      length l1 = length l2
       ( k x1 x2, l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2).
  Proof.
    intros. apply (anti_symm _).
    - apply and_intro; [apply big_sepL2_length|].
      apply forall_intro=> k. apply forall_intro=> x1. apply forall_intro=> x2.
      do 2 (apply impl_intro_l; apply pure_elim_l=> ?). by apply :big_sepL2_lookup.
    - apply pure_elim_l=> ?. rewrite -big_sepL2_intuitionistically_forall //.
      repeat setoid_rewrite pure_impl_forall.
      by rewrite intuitionistic_intuitionistically.
  Qed.

647
648
649
650
651
652
  Lemma big_sepL2_impl Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
     ( k x1 x2,
      l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2 - Ψ k x1 x2) -
    [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
653
654
655
    rewrite -(idemp bi_and (big_sepL2 _ _ _)) {1}big_sepL2_length.
    apply pure_elim_l=> ?. rewrite big_sepL2_intuitionistically_forall //.
    apply bi.wand_intro_l. rewrite -big_sepL2_sep. by setoid_rewrite wand_elim_l.
656
657
  Qed.

Ralf Jung's avatar
Ralf Jung committed
658
659
660
661
662
663
664
665
666
  Lemma big_sepL2_wand Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
    ([ list] ky1;y2  l1;l2, Φ k y1 y2 - Ψ k y1 y2) -
    [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    apply wand_intro_r. rewrite -big_sepL2_sep.
    setoid_rewrite wand_elim_r. done.
  Qed.

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
  Lemma big_sepL2_delete Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  [ list] ky1;y2  l1;l2, if decide (k = i) then emp else Φ k y1 y2.
  Proof.
    intros. rewrite -(take_drop_middle l1 i x1) // -(take_drop_middle l2 i x2) //.
    assert (i < length l1  i < length l2) as [??] by eauto using lookup_lt_Some.
    rewrite !big_sepL2_app_same_length /=; [|rewrite ?take_length; lia..].
    rewrite Nat.add_0_r take_length_le; [|lia].
    rewrite decide_True // left_id.
    rewrite assoc -!(comm _ (Φ _ _ _)) -assoc. do 2 f_equiv.
    - apply big_sepL2_proper=> k y1 y2 Hk. apply lookup_lt_Some in Hk.
      rewrite take_length in Hk. by rewrite decide_False; last lia.
    - apply big_sepL2_proper=> k y1 y2 _. by rewrite decide_False; last lia.
  Qed.
  Lemma big_sepL2_delete' `{!BiAffine PROP} Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  [ list] ky1;y2  l1;l2,  k  i   Φ k y1 y2.
  Proof.
    intros. rewrite big_sepL2_delete //. (do 2 f_equiv)=> k y1 y2.
    rewrite -decide_emp. by repeat case_decide.
  Qed.

691
  Lemma big_sepL2_lookup_acc_impl {Φ l1 l2} i x1 x2 :
692
693
694
    l1 !! i = Some x1 
    l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
695
696
697
698
    (* We obtain [Φ] for the [x1] and [x2] *)
    Φ i x1 x2 
    (* We reobtain the bigop for a predicate [Ψ] selected by the user *)
     Ψ,
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
       ( k y1 y2,
         l1 !! k = Some y1    l2 !! k = Some y2    k  i  
        Φ k y1 y2 - Ψ k y1 y2) -
      Ψ i x1 x2 -
      [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros. rewrite big_sepL2_delete //. apply sep_mono_r, forall_intro=> Ψ.
    apply wand_intro_r, wand_intro_l.
    rewrite (big_sepL2_delete Ψ l1 l2 i) //. apply sep_mono_r.
    eapply wand_apply; [apply big_sepL2_impl|apply sep_mono_r].
    apply intuitionistically_intro', forall_intro=> k;
      apply forall_intro=> y1; apply forall_intro=> y2.
    do 2 (apply impl_intro_l, pure_elim_l=> ?); apply wand_intro_r.
    rewrite (forall_elim k) (forall_elim y1) (forall_elim y2).
    rewrite !(pure_True (_ = Some _)) // !left_id.
    destruct (decide _) as [->|]; [by apply: affine|].
    by rewrite pure_True //left_id intuitionistically_elim wand_elim_l.
  Qed.

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
  Lemma big_sepL2_later_1 `{BiAffine PROP} Φ l1 l2 :
    ( [ list] ky1;y2  l1;l2, Φ k y1 y2)   [ list] ky1;y2  l1;l2,  Φ k y1 y2.
  Proof.
    rewrite !big_sepL2_alt later_and big_sepL_later (timeless  _ %I).
    rewrite except_0_and. auto using and_mono, except_0_intro.
  Qed.

  Lemma big_sepL2_later_2 Φ l1 l2 :
    ([ list] ky1;y2  l1;l2,  Φ k y1 y2)   [ list] ky1;y2  l1;l2, Φ k y1 y2.
  Proof.
    rewrite !big_sepL2_alt later_and big_sepL_later_2.
    auto using and_mono, later_intro.
  Qed.

  Lemma big_sepL2_laterN_2 Φ n l1 l2 :
    ([ list] ky1;y2  l1;l2, ^n Φ k y1 y2)  ^n [ list] ky1;y2  l1;l2, Φ k y1 y2.
  Proof.
    rewrite !big_sepL2_alt laterN_and big_sepL_laterN_2.
    auto using and_mono, laterN_intro.
  Qed.

  Lemma big_sepL2_flip Φ l1 l2 :
    ([ list] ky1;y2  l2; l1, Φ k y2 y1)  ([ list] ky1;y2  l1; l2, Φ k y1 y2).
  Proof.
    revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2]//=; simplify_eq.
    by rewrite IH.
  Qed.

746
  Lemma big_sepL_sepL2 (Φ1 : nat  A  PROP) (Φ2 : nat  B  PROP) l1 l2 :
Ralf Jung's avatar
Ralf Jung committed
747
    length l1 = length l2 
748
749
    ([ list] ky1;y2  l1;l2, Φ1 k y1  Φ2 k y2) 
    ([ list] ky1  l1, Φ1 k y1)  ([ list] ky2  l2, Φ2 k y2).
Ralf Jung's avatar
Ralf Jung committed
750
  Proof.
751
    intros. rewrite -big_sepL_sep_zip // big_sepL2_alt pure_True // left_id //.
Ralf Jung's avatar
Ralf Jung committed
752
  Qed.
753
754
755
756
757
758
  Lemma big_sepL_sepL2_2 (Φ1 : nat  A  PROP) (Φ2 : nat  B  PROP) l1 l2 :
    length l1 = length l2 
    ([ list] ky1  l1, Φ1 k y1) -
    ([ list] ky2  l2, Φ2 k y2) -
    [ list] ky1;y2  l1;l2, Φ1 k y1  Φ2 k y2.
  Proof. intros. apply wand_intro_r. by rewrite big_sepL_sepL2. Qed.
Ralf Jung's avatar
Ralf Jung committed
759

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
  Global Instance big_sepL2_nil_persistent Φ :
    Persistent ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_persistent Φ l1 l2 :
    ( k x1 x2, Persistent (Φ k x1 x2)) 
    Persistent ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.

  Global Instance big_sepL2_nil_affine Φ :
    Affine ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_affine Φ l1 l2 :
    ( k x1 x2, Affine (Φ k x1 x2)) 
    Affine ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.
775
776
777
778
779
780
781
782

  Global Instance big_sepL2_nil_timeless `{!Timeless (emp%I : PROP)} Φ :
    Timeless ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_timeless `{!Timeless (emp%I : PROP)} Φ l1 l2 :
    ( k x1 x2, Timeless (Φ k x1 x2)) 
    Timeless ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.
783
784
End sep_list2.

785
786
787
Lemma big_sepL_sepL2_diag {A} (Φ : nat  A  A  PROP) (l : list A) :
  ([ list] ky  l, Φ k y y) -
  ([ list] ky1;y2  l;l, Φ k y1 y2).
788
789
790
791
Proof.
  rewrite big_sepL2_alt. rewrite pure_True // left_id.
  rewrite zip_diag big_sepL_fmap /=. done.
Qed.
792

793
Lemma big_sepL2_ne_2 {A B : ofe}
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    (Φ Ψ : nat  A  B  PROP) l1 l2 l1' l2' n :
  l1 {n} l1'  l2 {n} l2' 
  ( k y1 y1' y2 y2',
    l1 !! k = Some y1  l1' !! k = Some y1'  y1 {n} y1' 
    l2 !! k = Some y2  l2' !! k = Some y2'  y2 {n} y2' 
    Φ k y1 y2 {n} Ψ k y1' y2') 
  ([ list] k  y1;y2  l1;l2, Φ k y1 y2)%I {n} ([ list] k  y1;y2  l1';l2', Ψ k y1 y2)%I.
Proof.
  intros Hl1 Hl2 Hf. rewrite !big_sepL2_alt. f_equiv.
  { do 2 f_equiv; by apply: length_ne. }
  apply big_opL_ne_2; [by f_equiv|].
  intros k [x1 y1] [x2 y2] (?&?&[=<- <-]&?&?)%lookup_zip_with_Some
    (?&?&[=<- <-]&?&?)%lookup_zip_with_Some [??]; naive_solver.
Qed.

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
Section and_list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types Φ Ψ : nat  A  PROP.

  Lemma big_andL_nil Φ : ([ list] ky  nil, Φ k y)  True.
  Proof. done. Qed.
  Lemma big_andL_nil' P Φ : P  [ list] ky  nil, Φ k y.
  Proof. by apply pure_intro. Qed.
  Lemma big_andL_cons Φ x l :
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
  Proof. by rewrite big_opL_cons. Qed.
  Lemma big_andL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_andL_app Φ l1 l2 :
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
  Proof. by rewrite big_opL_app. Qed.

828
829
830
831
832
833
834
835
  Lemma big_andL_submseteq (Φ : A  PROP) l1 l2 :
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_andL_app and_elim_l.
  Qed.

  (** The lemmas [big_andL_mono], [big_andL_ne] and [big_andL_proper] are more
  generic than the instances as they also give [l !! k = Some y] in the premise. *)
836
837
838
  Lemma big_andL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
839
  Proof. apply big_opL_gen_proper; apply _. Qed.
840
841
842
843
  Lemma big_andL_ne Φ Ψ l n :
    ( k y, l !! k = Some y  Φ k y {n} Ψ k y) 
    ([ list] k  y  l, Φ k y)%I {n} ([ list] k  y  l, Ψ k y)%I.
  Proof. apply big_opL_ne. Qed.
844
845
846
847
848
  Lemma big_andL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
  Proof. apply big_opL_proper. Qed.

849
850
  (** No need to declare instances for non-expansiveness and properness, we
  get both from the generic [big_opL] instances. *)
851
852
853
  Global Instance big_andL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
           (big_opL (@bi_and PROP) (A:=A)).
854
  Proof. intros f g Hf m ? <-. apply big_andL_mono; intros; apply Hf. Qed.
855
  Global Instance big_andL_id_mono' :
856
    Proper (Forall2 () ==> ()) (big_opL (@bi_and PROP) (λ _ P, P)).
857
858
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

859
  Lemma big_andL_lookup Φ l i x :
860
861
862
863
864
865
866
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // big_andL_app /=.
    rewrite Nat.add_0_r take_length_le;
      eauto using lookup_lt_Some, Nat.lt_le_incl, and_elim_l', and_elim_r'.
  Qed.

867
  Lemma big_andL_elem_of (Φ : A  PROP) l x :
868
869
    x  l  ([ list] y  l, Φ y)  Φ x.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
870
    intros [i ?]%elem_of_list_lookup. by eapply (big_andL_lookup (λ _, Φ)).
871
872
873
874
875
876
  Qed.

  Lemma big_andL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
  Proof. by rewrite big_opL_fmap. Qed.

877
878
879
880
  Lemma big_andL_bind {B} (f : A  list B) (Φ : B  PROP) l :
    ([ list] y  l = f, Φ y)  ([ list] x  l, [