From iris.algebra Require Export cmra. From iris.base_logic Require Import base_logic. From stdpp Require Import finite. Set Default Proof Using "Type". (** * Indexed product *) (** Need to put this in a definition to make canonical structures to work. *) Definition iprod `{Finite A} (B : A → ofeT) := ∀ x, B x. Definition iprod_insert `{Finite A} {B : A → ofeT} (x : A) (y : B x) (f : iprod B) : iprod B := λ x', match decide (x = x') with left H => eq_rect _ B y _ H | right _ => f x' end. Instance: Params (@iprod_insert) 5. Section iprod_cofe. Context `{Finite A} {B : A → ofeT}. Implicit Types x : A. Implicit Types f g : iprod B. Instance iprod_equiv : Equiv (iprod B) := λ f g, ∀ x, f x ≡ g x. Instance iprod_dist : Dist (iprod B) := λ n f g, ∀ x, f x ≡{n}≡ g x. Definition iprod_ofe_mixin : OfeMixin (iprod B). Proof. split. - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|]. intros Hfg k; apply equiv_dist; intros n; apply Hfg. - intros n; split. + by intros f x. + by intros f g ? x. + by intros f g h ?? x; trans (g x). - intros n f g Hfg x; apply dist_S, Hfg. Qed. Canonical Structure iprodC : ofeT := OfeT (iprod B) iprod_ofe_mixin. Program Definition iprod_chain (c : chain iprodC) (x : A) : chain (B x) := {| chain_car n := c n x |}. Next Obligation. by intros c x n i ?; apply (chain_cauchy c). Qed. Global Program Instance iprod_cofe `{∀ a, Cofe (B a)} : Cofe iprodC := {| compl c x := compl (iprod_chain c x) |}. Next Obligation. intros ? n c x. rewrite (conv_compl n (iprod_chain c x)). apply (chain_cauchy c); lia. Qed. (** Properties of iprod_insert. *) Global Instance iprod_insert_ne x : NonExpansive2 (iprod_insert x). Proof. intros n y1 y2 ? f1 f2 ? x'; rewrite /iprod_insert. by destruct (decide _) as [[]|]. Qed. Global Instance iprod_insert_proper x : Proper ((≡) ==> (≡) ==> (≡)) (iprod_insert x) := ne_proper_2 _. Lemma iprod_lookup_insert f x y : (iprod_insert x y f) x = y. Proof. rewrite /iprod_insert; destruct (decide _) as [Hx|]; last done. by rewrite (proof_irrel Hx eq_refl). Qed. Lemma iprod_lookup_insert_ne f x x' y : x ≠ x' → (iprod_insert x y f) x' = f x'. Proof. by rewrite /iprod_insert; destruct (decide _). Qed. Global Instance iprod_lookup_timeless f x : Timeless f → Timeless (f x). Proof. intros ? y ?. cut (f ≡ iprod_insert x y f). { by move=> /(_ x)->; rewrite iprod_lookup_insert. } apply (timeless _)=> x'; destruct (decide (x = x')) as [->|]; by rewrite ?iprod_lookup_insert ?iprod_lookup_insert_ne. Qed. Global Instance iprod_insert_timeless f x y : Timeless f → Timeless y → Timeless (iprod_insert x y f). Proof. intros ?? g Heq x'; destruct (decide (x = x')) as [->|]. - rewrite iprod_lookup_insert. apply: timeless. by rewrite -(Heq x') iprod_lookup_insert. - rewrite iprod_lookup_insert_ne //. apply: timeless. by rewrite -(Heq x') iprod_lookup_insert_ne. Qed. End iprod_cofe. Arguments iprodC {_ _ _} _. Section iprod_cmra. Context `{Finite A} {B : A → ucmraT}. Implicit Types f g : iprod B. Instance iprod_op : Op (iprod B) := λ f g x, f x ⋅ g x. Instance iprod_pcore : PCore (iprod B) := λ f, Some (λ x, core (f x)). Instance iprod_valid : Valid (iprod B) := λ f, ∀ x, ✓ f x. Instance iprod_validN : ValidN (iprod B) := λ n f, ∀ x, ✓{n} f x. Definition iprod_lookup_op f g x : (f ⋅ g) x = f x ⋅ g x := eq_refl. Definition iprod_lookup_core f x : (core f) x = core (f x) := eq_refl. Lemma iprod_included_spec (f g : iprod B) : f ≼ g ↔ ∀ x, f x ≼ g x. Proof. split; [by intros [h Hh] x; exists (h x); rewrite /op /iprod_op (Hh x)|]. intros [h ?]%finite_choice. by exists h. Qed. Lemma iprod_cmra_mixin : CMRAMixin (iprod B). Proof. apply cmra_total_mixin. - eauto. - by intros n f1 f2 f3 Hf x; rewrite iprod_lookup_op (Hf x). - by intros n f1 f2 Hf x; rewrite iprod_lookup_core (Hf x). - by intros n f1 f2 Hf ? x; rewrite -(Hf x). - intros g; split. + intros Hg n i; apply cmra_valid_validN, Hg. + intros Hg i; apply cmra_valid_validN=> n; apply Hg. - intros n f Hf x; apply cmra_validN_S, Hf. - by intros f1 f2 f3 x; rewrite iprod_lookup_op assoc. - by intros f1 f2 x; rewrite iprod_lookup_op comm. - by intros f x; rewrite iprod_lookup_op iprod_lookup_core cmra_core_l. - by intros f x; rewrite iprod_lookup_core cmra_core_idemp. - intros f1 f2; rewrite !iprod_included_spec=> Hf x. by rewrite iprod_lookup_core; apply cmra_core_mono, Hf. - intros n f1 f2 Hf x; apply cmra_validN_op_l with (f2 x), Hf. - intros n f f1 f2 Hf Hf12. destruct (finite_choice (λ x (yy : B x * B x), f x ≡ yy.1 ⋅ yy.2 ∧ yy.1 ≡{n}≡ f1 x ∧ yy.2 ≡{n}≡ f2 x)) as [gg Hgg]. { intros x. specialize (Hf12 x). destruct (cmra_extend n (f x) (f1 x) (f2 x)) as (y1&y2&?&?&?); eauto. exists (y1,y2); eauto. } exists (λ x, gg x.1), (λ x, gg x.2). split_and!=> -?; naive_solver. Qed. Canonical Structure iprodR := CMRAT (iprod B) iprod_ofe_mixin iprod_cmra_mixin. Instance iprod_empty : Empty (iprod B) := λ x, ∅. Definition iprod_lookup_empty x : ∅ x = ∅ := eq_refl. Lemma iprod_ucmra_mixin : UCMRAMixin (iprod B). Proof. split. - intros x; apply ucmra_unit_valid. - by intros f x; rewrite iprod_lookup_op left_id. - constructor=> x. apply persistent_core, _. Qed. Canonical Structure iprodUR := UCMRAT (iprod B) iprod_ofe_mixin iprod_cmra_mixin iprod_ucmra_mixin. Global Instance iprod_empty_timeless : (∀ i, Timeless (∅ : B i)) → Timeless (∅ : iprod B). Proof. intros ? f Hf x. by apply: timeless. Qed. (** Internalized properties *) Lemma iprod_equivI {M} g1 g2 : g1 ≡ g2 ⊣⊢ (∀ i, g1 i ≡ g2 i : uPred M). Proof. by uPred.unseal. Qed. Lemma iprod_validI {M} g : ✓ g ⊣⊢ (∀ i, ✓ g i : uPred M). Proof. by uPred.unseal. Qed. (** Properties of iprod_insert. *) Lemma iprod_insert_updateP x (P : B x → Prop) (Q : iprod B → Prop) g y1 : y1 ~~>: P → (∀ y2, P y2 → Q (iprod_insert x y2 g)) → iprod_insert x y1 g ~~>: Q. Proof. intros Hy1 HP; apply cmra_total_updateP. intros n gf Hg. destruct (Hy1 n (Some (gf x))) as (y2&?&?). { move: (Hg x). by rewrite iprod_lookup_op iprod_lookup_insert. } exists (iprod_insert x y2 g); split; [auto|]. intros x'; destruct (decide (x' = x)) as [->|]; rewrite iprod_lookup_op ?iprod_lookup_insert //; []. move: (Hg x'). by rewrite iprod_lookup_op !iprod_lookup_insert_ne. Qed. Lemma iprod_insert_updateP' x (P : B x → Prop) g y1 : y1 ~~>: P → iprod_insert x y1 g ~~>: λ g', ∃ y2, g' = iprod_insert x y2 g ∧ P y2. Proof. eauto using iprod_insert_updateP. Qed. Lemma iprod_insert_update g x y1 y2 : y1 ~~> y2 → iprod_insert x y1 g ~~> iprod_insert x y2 g. Proof. rewrite !cmra_update_updateP; eauto using iprod_insert_updateP with subst. Qed. End iprod_cmra. Arguments iprodR {_ _ _} _. Arguments iprodUR {_ _ _} _. Definition iprod_singleton `{Finite A} {B : A → ucmraT} (x : A) (y : B x) : iprod B := iprod_insert x y ∅. Instance: Params (@iprod_singleton) 5. Section iprod_singleton. Context `{Finite A} {B : A → ucmraT}. Implicit Types x : A. Global Instance iprod_singleton_ne x : NonExpansive (iprod_singleton x : B x → _). Proof. intros n y1 y2 ?; apply iprod_insert_ne. done. by apply equiv_dist. Qed. Global Instance iprod_singleton_proper x : Proper ((≡) ==> (≡)) (iprod_singleton x) := ne_proper _. Lemma iprod_lookup_singleton x (y : B x) : (iprod_singleton x y) x = y. Proof. by rewrite /iprod_singleton iprod_lookup_insert. Qed. Lemma iprod_lookup_singleton_ne x x' (y : B x) : x ≠ x' → (iprod_singleton x y) x' = ∅. Proof. intros; by rewrite /iprod_singleton iprod_lookup_insert_ne. Qed. Global Instance iprod_singleton_timeless x (y : B x) : (∀ i, Timeless (∅ : B i)) → Timeless y → Timeless (iprod_singleton x y). Proof. apply _. Qed. Lemma iprod_singleton_validN n x (y : B x) : ✓{n} iprod_singleton x y ↔ ✓{n} y. Proof. split; [by move=>/(_ x); rewrite iprod_lookup_singleton|]. move=>Hx x'; destruct (decide (x = x')) as [->|]; rewrite ?iprod_lookup_singleton ?iprod_lookup_singleton_ne //. by apply ucmra_unit_validN. Qed. Lemma iprod_core_singleton x (y : B x) : core (iprod_singleton x y) ≡ iprod_singleton x (core y). Proof. move=>x'; destruct (decide (x = x')) as [->|]; by rewrite iprod_lookup_core ?iprod_lookup_singleton ?iprod_lookup_singleton_ne // (persistent_core ∅). Qed. Global Instance iprod_singleton_persistent x (y : B x) : Persistent y → Persistent (iprod_singleton x y). Proof. by rewrite !persistent_total iprod_core_singleton=> ->. Qed. Lemma iprod_op_singleton (x : A) (y1 y2 : B x) : iprod_singleton x y1 ⋅ iprod_singleton x y2 ≡ iprod_singleton x (y1 ⋅ y2). Proof. intros x'; destruct (decide (x' = x)) as [->|]. - by rewrite iprod_lookup_op !iprod_lookup_singleton. - by rewrite iprod_lookup_op !iprod_lookup_singleton_ne // left_id. Qed. Lemma iprod_singleton_updateP x (P : B x → Prop) (Q : iprod B → Prop) y1 : y1 ~~>: P → (∀ y2, P y2 → Q (iprod_singleton x y2)) → iprod_singleton x y1 ~~>: Q. Proof. rewrite /iprod_singleton; eauto using iprod_insert_updateP. Qed. Lemma iprod_singleton_updateP' x (P : B x → Prop) y1 : y1 ~~>: P → iprod_singleton x y1 ~~>: λ g, ∃ y2, g = iprod_singleton x y2 ∧ P y2. Proof. eauto using iprod_singleton_updateP. Qed. Lemma iprod_singleton_update x (y1 y2 : B x) : y1 ~~> y2 → iprod_singleton x y1 ~~> iprod_singleton x y2. Proof. eauto using iprod_insert_update. Qed. Lemma iprod_singleton_updateP_empty x (P : B x → Prop) (Q : iprod B → Prop) : ∅ ~~>: P → (∀ y2, P y2 → Q (iprod_singleton x y2)) → ∅ ~~>: Q. Proof. intros Hx HQ; apply cmra_total_updateP. intros n gf Hg. destruct (Hx n (Some (gf x))) as (y2&?&?); first apply Hg. exists (iprod_singleton x y2); split; [by apply HQ|]. intros x'; destruct (decide (x' = x)) as [->|]. - by rewrite iprod_lookup_op iprod_lookup_singleton. - rewrite iprod_lookup_op iprod_lookup_singleton_ne //. apply Hg. Qed. Lemma iprod_singleton_updateP_empty' x (P : B x → Prop) : ∅ ~~>: P → ∅ ~~>: λ g, ∃ y2, g = iprod_singleton x y2 ∧ P y2. Proof. eauto using iprod_singleton_updateP_empty. Qed. Lemma iprod_singleton_update_empty x (y : B x) : ∅ ~~> y → ∅ ~~> iprod_singleton x y. Proof. rewrite !cmra_update_updateP; eauto using iprod_singleton_updateP_empty with subst. Qed. End iprod_singleton. (** * Functor *) Definition iprod_map `{Finite A} {B1 B2 : A → ofeT} (f : ∀ x, B1 x → B2 x) (g : iprod B1) : iprod B2 := λ x, f _ (g x). Lemma iprod_map_ext `{Finite A} {B1 B2 : A → ofeT} (f1 f2 : ∀ x, B1 x → B2 x) (g : iprod B1) : (∀ x, f1 x (g x) ≡ f2 x (g x)) → iprod_map f1 g ≡ iprod_map f2 g. Proof. done. Qed. Lemma iprod_map_id `{Finite A} {B : A → ofeT} (g : iprod B) : iprod_map (λ _, id) g = g. Proof. done. Qed. Lemma iprod_map_compose `{Finite A} {B1 B2 B3 : A → ofeT} (f1 : ∀ x, B1 x → B2 x) (f2 : ∀ x, B2 x → B3 x) (g : iprod B1) : iprod_map (λ x, f2 x ∘ f1 x) g = iprod_map f2 (iprod_map f1 g). Proof. done. Qed. Instance iprod_map_ne `{Finite A} {B1 B2 : A → ofeT} (f : ∀ x, B1 x → B2 x) n : (∀ x, Proper (dist n ==> dist n) (f x)) → Proper (dist n ==> dist n) (iprod_map f). Proof. by intros ? y1 y2 Hy x; rewrite /iprod_map (Hy x). Qed. Instance iprod_map_cmra_monotone `{Finite A} {B1 B2 : A → ucmraT} (f : ∀ x, B1 x → B2 x) : (∀ x, CMRAMonotone (f x)) → CMRAMonotone (iprod_map f). Proof. split; first apply _. - intros n g Hg x; rewrite /iprod_map; apply (cmra_monotone_validN (f _)), Hg. - intros g1 g2; rewrite !iprod_included_spec=> Hf x. rewrite /iprod_map; apply (cmra_monotone _), Hf. Qed. Definition iprodC_map `{Finite A} {B1 B2 : A → ofeT} (f : iprod (λ x, B1 x -n> B2 x)) : iprodC B1 -n> iprodC B2 := CofeMor (iprod_map f). Instance iprodC_map_ne `{Finite A} {B1 B2 : A → ofeT} : NonExpansive (@iprodC_map A _ _ B1 B2). Proof. intros n f1 f2 Hf g x; apply Hf. Qed. Program Definition iprodCF `{Finite C} (F : C → cFunctor) : cFunctor := {| cFunctor_car A B := iprodC (λ c, cFunctor_car (F c) A B); cFunctor_map A1 A2 B1 B2 fg := iprodC_map (λ c, cFunctor_map (F c) fg) |}. Next Obligation. intros C ?? F A1 A2 B1 B2 n ?? g. by apply iprodC_map_ne=>?; apply cFunctor_ne. Qed. Next Obligation. intros C ?? F A B g; simpl. rewrite -{2}(iprod_map_id g). apply iprod_map_ext=> y; apply cFunctor_id. Qed. Next Obligation. intros C ?? F A1 A2 A3 B1 B2 B3 f1 f2 f1' f2' g. rewrite /= -iprod_map_compose. apply iprod_map_ext=>y; apply cFunctor_compose. Qed. Instance iprodCF_contractive `{Finite C} (F : C → cFunctor) : (∀ c, cFunctorContractive (F c)) → cFunctorContractive (iprodCF F). Proof. intros ? A1 A2 B1 B2 n ?? g. by apply iprodC_map_ne=>c; apply cFunctor_contractive. Qed. Program Definition iprodURF `{Finite C} (F : C → urFunctor) : urFunctor := {| urFunctor_car A B := iprodUR (λ c, urFunctor_car (F c) A B); urFunctor_map A1 A2 B1 B2 fg := iprodC_map (λ c, urFunctor_map (F c) fg) |}. Next Obligation. intros C ?? F A1 A2 B1 B2 n ?? g. by apply iprodC_map_ne=>?; apply urFunctor_ne. Qed. Next Obligation. intros C ?? F A B g; simpl. rewrite -{2}(iprod_map_id g). apply iprod_map_ext=> y; apply urFunctor_id. Qed. Next Obligation. intros C ?? F A1 A2 A3 B1 B2 B3 f1 f2 f1' f2' g. rewrite /=-iprod_map_compose. apply iprod_map_ext=>y; apply urFunctor_compose. Qed. Instance iprodURF_contractive `{Finite C} (F : C → urFunctor) : (∀ c, urFunctorContractive (F c)) → urFunctorContractive (iprodURF F). Proof. intros ? A1 A2 B1 B2 n ?? g. by apply iprodC_map_ne=>c; apply urFunctor_contractive. Qed.