Commit e5c102c3 authored by Robbert Krebbers's avatar Robbert Krebbers

Version of iPoseProof with intro pattern.

parent 7dec931b
......@@ -39,8 +39,10 @@ Context management
implications/wands of a hypothesis whose conclusion is persistent. In this
case, all hypotheses can be used for proving the premises, as well as for
the resulting goal.
- `iPoseProof pm_trm as "H"` : put `pm_trm` into the context as a new hypothesis
`H`.
- `iPoseProof pm_trm as (x1 ... xn) "ipat"` : put `pm_trm` into the context and
eliminates it. This tactic is essentially the same as `iDestruct` with the
difference that when `pm_trm` is a non-univerisally quantified spatial
hypothesis, it will not throw the hypothesis away.
- `iAssert P with "spat" as "ipat"` : generates a new subgoal `P` and adds the
hypothesis `P` to the current goal. The specialization pattern `spat`
specifies which hypotheses will be consumed by proving `P`. The introduction
......
......@@ -554,9 +554,6 @@ Tactic Notation "iPoseProofCore" open_constr(lem)
| false => go spec_tac; last (tac Htmp)
end.
Tactic Notation "iPoseProof" open_constr(lem) "as" constr(H) :=
iPoseProofCore lem as false false (fun Htmp => iRename Htmp into H).
(** * Apply *)
Tactic Notation "iApply" open_constr(lem) :=
let rec go H := first
......@@ -1172,6 +1169,40 @@ Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
Tactic Notation "iDestruct" open_constr(lem) "as" "%" simple_intropattern(pat) :=
iDestructCore lem as true (fun H => iPure H as pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1) ")"
constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) ")" constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) ")" constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) ")" constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) ")" constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")"
constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
simple_intropattern(x8) ")" constr(pat) :=
iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 x8 ) pat).
(** * Induction *)
Tactic Notation "iInductionCore" constr(x)
"as" simple_intropattern(pat) constr(IH) :=
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment