Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Joshua Yanovski
iris-coq
Commits
8b9a96ad
Commit
8b9a96ad
authored
Sep 23, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Relate "elements" of a finite set to nil.
parent
65171af2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
0 deletions
+11
-0
prelude/fin_collections.v
prelude/fin_collections.v
+11
-0
No files found.
prelude/fin_collections.v
View file @
8b9a96ad
...
@@ -38,6 +38,17 @@ Proof.
...
@@ -38,6 +38,17 @@ Proof.
apply
elem_of_nil_inv
;
intros
x
.
apply
elem_of_nil_inv
;
intros
x
.
rewrite
elem_of_elements
,
elem_of_empty
;
tauto
.
rewrite
elem_of_elements
,
elem_of_empty
;
tauto
.
Qed
.
Qed
.
Lemma
elements_empty_inv
X
:
elements
X
=
[]
→
X
≡
∅
.
Proof
.
intros
HX
;
apply
elem_of_equiv_empty
;
intros
x
.
rewrite
<-
elem_of_elements
,
HX
,
elem_of_nil
.
tauto
.
Qed
.
Lemma
elements_empty
'
X
:
elements
X
=
[]
↔
X
≡
∅
.
Proof
.
split
;
intros
HX
;
[
by
apply
elements_empty_inv
|
].
by
rewrite
<-
Permutation_nil
,
HX
,
elements_empty
.
Qed
.
Lemma
elements_union_singleton
(
X
:
C
)
x
:
Lemma
elements_union_singleton
(
X
:
C
)
x
:
x
∉
X
→
elements
(
{
[
x
]
}
∪
X
)
≡ₚ
x
::
elements
X
.
x
∉
X
→
elements
(
{
[
x
]
}
∪
X
)
≡ₚ
x
::
elements
X
.
Proof
.
Proof
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment