Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Joshua Yanovski
iriscoq
Commits
7fc5808c
Commit
7fc5808c
authored
Mar 11, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
complete one_shot
parent
a26a3367
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
197 additions
and
0 deletions
+197
0
algebra/one_shot.v
algebra/one_shot.v
+197
0
No files found.
algebra/one_shot.v
View file @
7fc5808c
...
@@ 2,6 +2,8 @@ From iris.algebra Require Export cmra.
...
@@ 2,6 +2,8 @@ From iris.algebra Require Export cmra.
From
iris
.
algebra
Require
Import
upred
.
From
iris
.
algebra
Require
Import
upred
.
Local
Arguments
validN
_
_
_
!
_
/
.
Local
Arguments
validN
_
_
_
!
_
/
.
Local
Arguments
valid
_
_
!
_
/
.
Local
Arguments
valid
_
_
!
_
/
.
Local
Arguments
cmra_validN
_
_
!
_
/
.
Local
Arguments
cmra_valid
_
!
_
/
.
(
*
TODO
:
Really
,
we
should
have
sums
,
and
then
this
should
be
just
"excl unit + A"
.
*
)
(
*
TODO
:
Really
,
we
should
have
sums
,
and
then
this
should
be
just
"excl unit + A"
.
*
)
Inductive
one_shot
{
A
:
Type
}
:=
Inductive
one_shot
{
A
:
Type
}
:=
...
@@ 92,3 +94,198 @@ End cofe.
...
@@ 92,3 +94,198 @@ End cofe.
Arguments
one_shotC
:
clear
implicits
.
Arguments
one_shotC
:
clear
implicits
.
(
*
Functor
on
COFEs
*
)
Definition
one_shot_map
{
A
B
}
(
f
:
A
→
B
)
(
x
:
one_shot
A
)
:
one_shot
B
:=
match
x
with

OneShotPending
=>
OneShotPending

Shot
a
=>
Shot
(
f
a
)

OneShotUnit
=>
OneShotUnit

OneShotBot
=>
OneShotBot
end
.
Instance:
Params
(
@
one_shot_map
)
2.
Lemma
one_shot_map_id
{
A
}
(
x
:
one_shot
A
)
:
one_shot_map
id
x
=
x
.
Proof
.
by
destruct
x
.
Qed
.
Lemma
one_shot_map_compose
{
A
B
C
}
(
f
:
A
→
B
)
(
g
:
B
→
C
)
(
x
:
one_shot
A
)
:
one_shot_map
(
g
∘
f
)
x
=
one_shot_map
g
(
one_shot_map
f
x
).
Proof
.
by
destruct
x
.
Qed
.
Lemma
one_shot_map_ext
{
A
B
:
cofeT
}
(
f
g
:
A
→
B
)
x
:
(
∀
x
,
f
x
≡
g
x
)
→
one_shot_map
f
x
≡
one_shot_map
g
x
.
Proof
.
by
destruct
x
;
constructor
.
Qed
.
Instance
one_shot_map_cmra_ne
{
A
B
:
cofeT
}
n
:
Proper
((
dist
n
==>
dist
n
)
==>
dist
n
==>
dist
n
)
(
@
one_shot_map
A
B
).
Proof
.
intros
f
f
'
Hf
;
destruct
1
;
constructor
;
by
try
apply
Hf
.
Qed
.
Definition
one_shotC_map
{
A
B
}
(
f
:
A

n
>
B
)
:
one_shotC
A

n
>
one_shotC
B
:=
CofeMor
(
one_shot_map
f
).
Instance
one_shotC_map_ne
A
B
n
:
Proper
(
dist
n
==>
dist
n
)
(
@
one_shotC_map
A
B
).
Proof
.
intros
f
f
'
Hf
[];
constructor
;
by
try
apply
Hf
.
Qed
.
Section
cmra
.
Context
{
A
:
cmraT
}
.
Implicit
Types
a
b
:
A
.
Implicit
Types
x
y
:
one_shot
A
.
(
*
CMRA
*
)
Instance
one_shot_valid
:
Valid
(
one_shot
A
)
:=
λ
x
,
match
x
with

OneShotPending
=>
True

Shot
a
=>
✓
a

OneShotUnit
=>
True

OneShotBot
=>
False
end
.
Instance
one_shot_validN
:
ValidN
(
one_shot
A
)
:=
λ
n
x
,
match
x
with

OneShotPending
=>
True

Shot
a
=>
✓
{
n
}
a

OneShotUnit
=>
True

OneShotBot
=>
False
end
.
Global
Instance
one_shot_empty
:
Empty
(
one_shot
A
)
:=
OneShotUnit
.
Instance
one_shot_core
:
Core
(
one_shot
A
)
:=
λ
x
,
match
x
with

Shot
a
=>
Shot
(
core
a
)

OneShotBot
=>
OneShotBot

_
=>
∅
end
.
Instance
one_shot_op
:
Op
(
one_shot
A
)
:=
λ
x
y
,
match
x
,
y
with

Shot
a
,
Shot
b
=>
Shot
(
a
⋅
b
)

Shot
a
,
OneShotUnit

OneShotUnit
,
Shot
a
=>
Shot
a

OneShotUnit
,
OneShotPending

OneShotPending
,
OneShotUnit
=>
OneShotPending

OneShotUnit
,
OneShotUnit
=>
OneShotUnit

_
,
_
=>
OneShotBot
end
.
Lemma
Shot_op
a
b
:
Shot
a
⋅
Shot
b
=
Shot
(
a
⋅
b
).
Proof
.
done
.
Qed
.
Lemma
Shot_incl
a
b
:
Shot
a
≼
Shot
b
↔
a
≼
b
.
Proof
.
split
;
intros
[
c
H
].

destruct
c
;
inversion_clear
H
;
first
by
eexists
.
by
rewrite
(
_
:
b
≡
a
).

exists
(
Shot
c
).
constructor
.
done
.
Qed
.
Definition
one_shot_cmra_mixin
:
CMRAMixin
(
one_shot
A
).
Proof
.
split
.

intros
n
[];
destruct
1
;
constructor
;
by
cofe_subst
.

intros
?
[

a


]
[

b


]
H
;
inversion_clear
H
;
constructor
;
by
f_equiv
.

intros
?
[

a


]
[

b


]
H
;
inversion_clear
H
;
cofe_subst
;
done
.

intros
[

a


];
rewrite
/=
?
cmra_valid_validN
;
naive_solver
eauto
using
O
.

intros
n
[

a


];
simpl
;
auto
using
cmra_validN_S
.

intros
[

a1


]
[

a2


]
[

a3


];
constructor
;
by
rewrite
?
assoc
.

intros
[

a1


]
[

a2


];
constructor
;
by
rewrite
1
?
comm
.

intros
[

a


];
constructor
;
[].
exact
:
cmra_core_l
.

intros
[

a


];
constructor
;
[].
exact
:
cmra_core_idemp
.

intros
[

a1


]
[

a2


];
simpl
;
try
solve
[
by
exists
OneShotUnit
;
constructor

by
exists
OneShotBot
;
constructor

by
intros
[[

a3


]
H
];
inversion_clear
H
].
+
intros
H
%
Shot_incl
.
apply
Shot_incl
,
cmra_core_preserving
.
done
.
+
intros
_.
exists
(
Shot
(
core
a2
)).
by
constructor
.

intros
n
[

a1


]
[

a2


];
simpl
;
eauto
using
cmra_validN_op_l
;
done
.

intros
n
[

a


]
y1
y2
Hx
Hx
'
;
last
2
first
.
+
by
exists
(
∅
,
∅
);
destruct
y1
,
y2
;
inversion_clear
Hx
'
.
+
by
exists
(
OneShotBot
,
OneShotBot
);
destruct
y1
,
y2
;
inversion_clear
Hx
'
.
+
destruct
y1
,
y2
;
try
(
exfalso
;
by
inversion_clear
Hx
'
).
*
by
exists
(
OneShotPending
,
OneShotUnit
).
*
by
exists
(
OneShotUnit
,
OneShotPending
).
+
destruct
y1
as
[

b1


],
y2
as
[

b2


];
try
(
exfalso
;
by
inversion_clear
Hx
'
).
*
apply
(
inj
Shot
)
in
Hx
'
.
destruct
(
cmra_extend
n
a
b1
b2
)
as
([
z1
z2
]
&?&?&?
);
auto
.
exists
(
Shot
z1
,
Shot
z2
).
by
repeat
constructor
.
*
exists
(
Shot
a
,
∅
).
inversion_clear
Hx
'
.
by
repeat
constructor
.
*
exists
(
∅
,
Shot
a
).
inversion_clear
Hx
'
.
by
repeat
constructor
.
Qed
.
Canonical
Structure
one_shotR
:
cmraT
:=
CMRAT
one_shot_cofe_mixin
one_shot_cmra_mixin
.
Global
Instance
one_shot_cmra_unit
:
CMRAUnit
one_shotR
.
Proof
.
split
.
done
.
by
intros
[].
apply
_.
Qed
.
Global
Instance
one_shot_cmra_discrete
:
CMRADiscrete
A
→
CMRADiscrete
one_shotR
.
Proof
.
split
;
first
apply
_.
intros
[

a


];
simpl
;
auto
using
cmra_discrete_valid
.
Qed
.
Lemma
one_shot_validN_inv_l
n
y
:
✓
{
n
}
(
OneShotPending
⋅
y
)
→
y
=
∅
.
Proof
.
destruct
y
as
[

b


];
[
done


done

done
].
destruct
1.
Qed
.
Lemma
one_shot_valid_inv_l
y
:
✓
(
OneShotPending
⋅
y
)
→
y
=
∅
.
Proof
.
intros
.
by
apply
one_shot_validN_inv_l
with
0
,
cmra_valid_validN
.
Qed
.
Lemma
one_shot_bot_largest
y
:
y
≼
OneShotBot
.
Proof
.
destruct
y
;
exists
OneShotBot
;
constructor
.
Qed
.
(
**
Internalized
properties
*
)
Lemma
one_shot_equivI
{
M
}
(
x
y
:
one_shot
A
)
:
(
x
≡
y
)
⊣⊢
(
match
x
,
y
with

OneShotPending
,
OneShotPending
=>
True

Shot
a
,
Shot
b
=>
a
≡
b

OneShotUnit
,
OneShotUnit
=>
True

OneShotBot
,
OneShotBot
=>
True

_
,
_
=>
False
end
:
uPred
M
).
Proof
.
uPred
.
unseal
;
do
2
split
;
first
by
destruct
1.
by
destruct
x
,
y
;
try
destruct
1
;
try
constructor
.
Qed
.
Lemma
one_shot_validI
{
M
}
(
x
:
one_shot
A
)
:
(
✓
x
)
⊣⊢
(
match
x
with

Shot
a
=>
✓
a

OneShotBot
=>
False

_
=>
True
end
:
uPred
M
).
Proof
.
uPred
.
unseal
.
by
destruct
x
.
Qed
.
(
**
Updates
*
)
Lemma
one_shot_update_shoot
(
a
:
A
)
:
✓
a
→
OneShotPending
~~>
Shot
a
.
Proof
.
move
=>
?
n
y
/
one_shot_validN_inv_l
>
.
by
apply
cmra_valid_validN
.
Qed
.
Lemma
one_shot_update
(
a1
a2
:
A
)
:
a1
~~>
a2
→
Shot
a1
~~>
Shot
a2
.
Proof
.
intros
Ha
n
[

b


]
?
;
simpl
;
auto
.
apply
cmra_validN_op_l
with
(
core
a1
),
Ha
.
by
rewrite
cmra_core_r
.
Qed
.
End
cmra
.
Arguments
one_shotR
:
clear
implicits
.
(
*
Functor
*
)
Instance
one_shot_map_cmra_monotone
{
A
B
:
cmraT
}
(
f
:
A
→
B
)
:
CMRAMonotone
f
→
CMRAMonotone
(
one_shot_map
f
).
Proof
.
split
;
try
apply
_.

intros
n
[

a


];
simpl
;
auto
using
validN_preserving
.

intros
[

a1


]
[

a2


]
[[

a3


]
Hx
];
inversion
Hx
;
setoid_subst
;
try
apply
cmra_unit_least
;
try
apply
one_shot_bot_largest
;
auto
;
[].
destruct
(
included_preserving
f
a1
(
a1
⋅
a3
))
as
[
b
?
].
{
by
apply
cmra_included_l
.
}
by
exists
(
Shot
b
);
constructor
.
Qed
.
Program
Definition
one_shotRF
(
F
:
rFunctor
)
:
rFunctor
:=
{
rFunctor_car
A
B
:=
one_shotR
(
rFunctor_car
F
A
B
);
rFunctor_map
A1
A2
B1
B2
fg
:=
one_shotC_map
(
rFunctor_map
F
fg
)
}
.
Next
Obligation
.
by
intros
F
A1
A2
B1
B2
n
f
g
Hfg
;
apply
one_shotC_map_ne
,
rFunctor_ne
.
Qed
.
Next
Obligation
.
intros
F
A
B
x
.
rewrite
/=
{
2
}
(
one_shot_map_id
x
).
apply
one_shot_map_ext
=>
y
;
apply
rFunctor_id
.
Qed
.
Next
Obligation
.
intros
F
A1
A2
A3
B1
B2
B3
f
g
f
'
g
'
x
.
rewrite
/=

one_shot_map_compose
.
apply
one_shot_map_ext
=>
y
;
apply
rFunctor_compose
.
Qed
.
Instance
one_shotRF_contractive
F
:
rFunctorContractive
F
→
rFunctorContractive
(
one_shotRF
F
).
Proof
.
by
intros
?
A1
A2
B1
B2
n
f
g
Hfg
;
apply
one_shotC_map_ne
,
rFunctor_contractive
.
Qed
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment