Commit 5c664142 authored by Ralf Jung's avatar Ralf Jung

start working on the singal proof

this uncovered that our story with respect to disjointness of namespaces is still lacking
parent e9c6a8ea
From algebra Require Export upred_big_op.
From program_logic Require Export sts saved_prop.
From heap_lang Require Export derived heap wp_tactics notation.
Import uPred.
Definition newchan := (λ: "", ref '0)%L.
Definition signal := (λ: "x", "x" <- '1)%L.
......@@ -96,10 +97,14 @@ Section proof.
Context {Σ : iFunctorG} (N : namespace).
(* TODO: Bundle HeapI and HeapG and have notation so that we can just write
"l ↦ '0". *)
Context (HeapI : gid) `{!HeapInG Σ HeapI} (HeapG : gname).
Context (HeapI : gid) `{!HeapInG Σ HeapI} (HeapG : gname) (HeapN : namespace).
Context (StsI : gid) `{!STSInG heap_lang Σ StsI sts}.
Context (SpI : gid) `{!SavedPropInG heap_lang Σ SpI}.
(* TODO: What is the best way to assert that HeapN and N are "disjoint", as
in, neither is a prefix of the other? This should be usable by automatic
proofs, e.g., that HeapN coPset_all N. *)
Notation iProp := (iPropG heap_lang Σ).
Definition waiting (P : iProp) (I : gset gname) : iProp :=
......@@ -116,7 +121,7 @@ Section proof.
Definition barrier_ctx (γ : gname) (l : loc) (P : iProp) : iProp :=
(heap_ctx HeapI HeapG N sts_ctx StsI sts γ N (barrier_inv l P))%I.
(heap_ctx HeapI HeapG HeapN sts_ctx StsI sts γ N (barrier_inv l P))%I.
Definition send (l : loc) (P : iProp) : iProp :=
( γ, barrier_ctx γ l P sts_ownS StsI sts γ low_states {[ Send ]})%I.
......@@ -133,6 +138,16 @@ Section proof.
Lemma signal_spec l P (Q : val iProp) :
(send l P P Q '()) wp coPset_all (signal (LocV l)) Q.
rewrite /signal /send /barrier_ctx. rewrite sep_exist_r.
apply exist_elim=>γ. wp_rec. (* FIXME wp_let *)
(* I think some evars here are better than repeating *everything* *)
eapply (sts_fsaS sts _ (wp_fsa _)) with (N0:=N) (γ0:=γ);simpl; eauto with I.
{ solve_elem_of+. (* FIXME eauto should do this *) }
rewrite [(_ sts_ownS _ _ _ _ _)%I]comm -!assoc /wp_fsa. apply sep_mono_r.
apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
apply const_elim_sep_l=>Hs. destruct p; last done.
rewrite {1}/barrier_inv =>/={Hs}. rewrite later_sep.
eapply wp_store.
Lemma wait_spec l P (Q : val iProp) :
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment