Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Joshua Yanovski
iriscoq
Commits
49fa33d4
Commit
49fa33d4
authored
Jan 25, 2017
by
Robbert Krebbers
Browse files
Curry and uncurry operations on gmap.
parent
bd222fbf
Changes
1
Hide whitespace changes
Inline
Sidebyside
theories/prelude/gmap.v
View file @
49fa33d4
...
...
@@ 123,6 +123,56 @@ Next Obligation.
by
rewrite
map_of_to_list
.
Qed
.
(
**
*
Curry
and
uncurry
*
)
Definition
gmap_curry
`
{
Countable
K1
,
Countable
K2
}
{
A
}
:
gmap
K1
(
gmap
K2
A
)
→
gmap
(
K1
*
K2
)
A
:=
map_fold
(
λ
i1
m
'
macc
,
map_fold
(
λ
i2
x
,
<
[(
i1
,
i2
)
:=
x
]
>
)
macc
m
'
)
∅
.
Definition
gmap_uncurry
`
{
Countable
K1
,
Countable
K2
}
{
A
}
:
gmap
(
K1
*
K2
)
A
→
gmap
K1
(
gmap
K2
A
)
:=
map_fold
(
λ
'
(
i1
,
i2
)
x
,
partial_alter
(
Some
∘
<
[
i2
:=
x
]
>
∘
from_option
id
∅
)
i1
)
∅
.
Section
curry_uncurry
.
Context
`
{
Countable
K1
,
Countable
K2
}
{
A
:
Type
}
.
Lemma
lookup_gmap_curry
(
m
:
gmap
K1
(
gmap
K2
A
))
i
j
:
gmap_curry
m
!!
(
i
,
j
)
=
m
!!
i
≫
=
(
!!
j
).
Proof
.
apply
(
map_fold_ind
(
λ
mr
m
,
mr
!!
(
i
,
j
)
=
m
!!
i
≫
=
(
!!
j
))).
{
by
rewrite
!
lookup_empty
.
}
clear
m
;
intros
i
'
m2
m
m12
Hi
'
IH
.
apply
(
map_fold_ind
(
λ
m2r
m2
,
m2r
!!
(
i
,
j
)
=
<
[
i
'
:=
m2
]
>
m
!!
i
≫
=
(
!!
j
))).
{
rewrite
IH
.
destruct
(
decide
(
i
'
=
i
))
as
[
>
].

rewrite
lookup_insert
,
Hi
'
;
simpl
;
by
rewrite
lookup_empty
.

by
rewrite
lookup_insert_ne
by
done
.
}
intros
j
'
y
m2
'
m12
'
Hj
'
IH
'
.
destruct
(
decide
(
i
=
i
'
))
as
[
>
].

rewrite
lookup_insert
;
simpl
.
destruct
(
decide
(
j
=
j
'
))
as
[
>
].
+
by
rewrite
!
lookup_insert
.
+
by
rewrite
!
lookup_insert_ne
,
IH
'
,
lookup_insert
by
congruence
.

by
rewrite
!
lookup_insert_ne
,
IH
'
,
lookup_insert_ne
by
congruence
.
Qed
.
Lemma
lookup_gmap_uncurry
(
m
:
gmap
(
K1
*
K2
)
A
)
i
j
:
gmap_uncurry
m
!!
i
≫
=
(
!!
j
)
=
m
!!
(
i
,
j
).
Proof
.
apply
(
map_fold_ind
(
λ
mr
m
,
mr
!!
i
≫
=
(
!!
j
)
=
m
!!
(
i
,
j
))).
{
by
rewrite
!
lookup_empty
.
}
clear
m
;
intros
[
i
'
j
'
]
x
m12
mr
Hij
'
IH
.
destruct
(
decide
(
i
=
i
'
))
as
[
>
].

rewrite
lookup_partial_alter
.
destruct
(
decide
(
j
=
j
'
))
as
[
>
].
+
destruct
(
mr
!!
i
'
);
simpl
;
by
rewrite
!
lookup_insert
.
+
destruct
(
mr
!!
i
'
);
simpl
;
by
rewrite
!
lookup_insert_ne
by
congruence
.

by
rewrite
lookup_partial_alter_ne
,
lookup_insert_ne
by
congruence
.
Qed
.
Lemma
gmap_curry_uncurry
(
m
:
gmap
(
K1
*
K2
)
A
)
:
gmap_curry
(
gmap_uncurry
m
)
=
m
.
Proof
.
apply
map_eq
;
intros
[
i
j
].
by
rewrite
lookup_gmap_curry
,
lookup_gmap_uncurry
.
Qed
.
End
curry_uncurry
.
(
**
*
Finite
sets
*
)
Notation
gset
K
:=
(
mapset
(
gmap
K
)).
Instance
gset_dom
`
{
Countable
K
}
{
A
}
:
Dom
(
gmap
K
A
)
(
gset
K
)
:=
mapset_dom
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment