Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Joshua Yanovski
iris-coq
Commits
453d2b16
Commit
453d2b16
authored
Apr 20, 2016
by
Ralf Jung
Browse files
heap: start to use proof mode
parent
04e8c944
Changes
2
Show whitespace changes
Inline
Side-by-side
heap_lang/heap.v
View file @
453d2b16
...
...
@@ -2,6 +2,7 @@ From iris.heap_lang Require Export lifting.
From
iris
.
algebra
Require
Import
upred_big_op
frac
dec_agree
.
From
iris
.
program_logic
Require
Export
invariants
ghost_ownership
.
From
iris
.
program_logic
Require
Import
ownership
auth
.
From
iris
.
proofmode
Require
Import
weakestpre
.
Import
uPred
.
(
*
TODO
:
The
entire
construction
could
be
generalized
to
arbitrary
languages
that
have
a
finmap
as
their
state
.
Or
maybe
even
beyond
"as their state"
,
i
.
e
.
arbitrary
...
...
@@ -140,29 +141,25 @@ Section heap.
(
**
Weakest
precondition
*
)
Lemma
wp_alloc
N
E
e
v
P
Φ
:
to_val
e
=
Some
v
→
P
⊢
heap_ctx
N
→
nclose
N
⊆
E
→
P
⊢
(
▷
∀
l
,
l
↦
v
-
★
Φ
(
LitV
(
LitLoc
l
)))
→
P
⊢
WP
Alloc
e
@
E
{{
Φ
}}
.
to_val
e
=
Some
v
→
nclose
N
⊆
E
→
(
heap_ctx
N
★
▷
∀
l
,
l
↦
v
-
★
Φ
(
LitV
$
LitLoc
l
))
⊢
WP
Alloc
e
@
E
{{
Φ
}}
.
Proof
.
rewrite
/
heap_ctx
/
heap_inv
=>
???
HP
.
trans
(
|={
E
}=>
auth_own
heap_name
∅
★
P
)
%
I
.
{
by
rewrite
-
pvs_frame_r
-
(
auth_empty
_
E
)
left_id
.
}
apply
wp_strip_pvs
,
(
auth_fsa
heap_inv
(
wp_fsa
(
Alloc
e
)))
iIntros
{??}
"[#Hinv HΦ]"
.
rewrite
/
heap_ctx
.
iPvs
(
auth_empty
heap_name
)
as
"Hheap"
.
(
*
TODO
:
use
an
iTactic
*
)
apply
(
auth_fsa
heap_inv
(
wp_fsa
(
Alloc
e
)))
with
N
heap_name
∅
;
simpl
;
eauto
with
I
.
rewrite
-
later_intro
.
apply
sep_mono_r
,
forall_intro
=>
h
;
apply
wand_intro_l
.
rewrite
-
assoc
left_id
;
apply
const_elim_sep_l
=>
?
.
rewrite
-
(
wp_alloc_pst
_
(
of_heap
h
))
//.
apply
sep_mono_r
;
rewrite
HP
;
apply
later_mono
.
apply
forall_mono
=>
l
;
apply
wand_intro_l
.
rewrite
always_and_sep_l
-
assoc
;
apply
const_elim_sep_l
=>
?
.
rewrite
-
(
exist_intro
(
op
{
[
l
:=
Frac
1
(
DecAgree
v
)
]
}
)).
repeat
erewrite
<-
exist_intro
by
apply
_
;
simpl
.
rewrite
-
of_heap_insert
left_id
right_id
.
rewrite
/
heap_mapsto
.
ecancel
[
_
-
★
Φ
_
]
%
I
.
rewrite
-
(
insert_singleton_op
h
);
last
by
apply
of_heap_None
.
rewrite
const_equiv
;
last
by
apply
(
insert_valid
h
).
by
rewrite
left_id
-
later_intro
.
iFrame
"Hheap"
.
iIntros
{
h
}
.
rewrite
[
∅
⋅
h
]
left_id
.
iIntros
"[% Hheap]"
.
rewrite
/
heap_inv
.
iApply
wp_alloc_pst
;
first
done
.
iFrame
"Hheap"
.
iNext
.
iIntros
{
l
}
"[% Hheap]"
.
iExists
(
op
{
[
l
:=
Frac
1
(
DecAgree
v
)
]
}
),
_
,
_.
rewrite
[
{
[
_
:=
_
]
}
⋅
∅
]
right_id
.
rewrite
-
of_heap_insert
-
(
insert_singleton_op
h
);
last
by
apply
of_heap_None
.
iFrame
"Hheap"
.
iSplit
.
{
(
*
FIXME
iTactic
for
introduction
of
constant
assertions
?
*
)
rewrite
const_equiv
;
first
done
.
split
;
first
done
.
by
apply
(
insert_valid
h
).
}
iIntros
"Hheap"
.
iApply
"HΦ"
.
rewrite
/
heap_mapsto
.
done
.
Qed
.
Lemma
wp_load
N
E
l
q
v
P
Φ
:
...
...
heap_lang/proofmode.v
View file @
453d2b16
...
...
@@ -25,7 +25,8 @@ Lemma tac_wp_alloc Δ Δ' N E j e v Φ :
Δ''
⊢
Φ
(
LitV
(
LitLoc
l
)))
→
Δ
⊢
WP
Alloc
e
@
E
{{
Φ
}}
.
Proof
.
intros
????
H
Δ
;
eapply
wp_alloc
;
eauto
.
intros
????
H
Δ
.
etrans
;
last
apply
:
wp_alloc
;
eauto
.
rewrite
-
always_and_sep_l
.
iSplit
;
first
done
.
rewrite
strip_later_env_sound
;
apply
later_mono
,
forall_intro
=>
l
.
destruct
(
H
Δ
l
)
as
(
Δ''
&?&
H
Δ'
).
rewrite
envs_app_sound
//; simpl.
by
rewrite
right_id
H
Δ'
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment