Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Joshua Yanovski
iris-coq
Commits
324db1dc
Commit
324db1dc
authored
Sep 21, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
More properties for the list CMRA.
parent
f72340bc
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
20 additions
and
2 deletions
+20
-2
algebra/list.v
algebra/list.v
+20
-2
No files found.
algebra/list.v
View file @
324db1dc
...
...
@@ -132,6 +132,15 @@ Section cmra.
Instance
list_valid
:
Valid
(
list
A
)
:=
Forall
(
λ
x
,
✓
x
).
Instance
list_validN
:
ValidN
(
list
A
)
:=
λ
n
,
Forall
(
λ
x
,
✓
{
n
}
x
).
Lemma
cons_valid
l
x
:
✓
(
x
::
l
)
↔
✓
x
∧
✓
l
.
Proof
.
apply
Forall_cons
.
Qed
.
Lemma
cons_validN
n
l
x
:
✓
{
n
}
(
x
::
l
)
↔
✓
{
n
}
x
∧
✓
{
n
}
l
.
Proof
.
apply
Forall_cons
.
Qed
.
Lemma
app_valid
l1
l2
:
✓
(
l1
++
l2
)
↔
✓
l1
∧
✓
l2
.
Proof
.
apply
Forall_app
.
Qed
.
Lemma
app_validN
n
l1
l2
:
✓
{
n
}
(
l1
++
l2
)
↔
✓
{
n
}
l1
∧
✓
{
n
}
l2
.
Proof
.
apply
Forall_app
.
Qed
.
Lemma
list_lookup_valid
l
:
✓
l
↔
∀
i
,
✓
(
l
!!
i
).
Proof
.
rewrite
{
1
}/
valid
/
list_valid
Forall_lookup
;
split
.
...
...
@@ -246,16 +255,25 @@ Section properties.
Implicit
Types
x
y
z
:
A
.
Local
Arguments
op
_
_
!
_
!
_
/
:
simpl
nomatch
.
Local
Arguments
cmra_op
_
!
_
!
_
/
:
simpl
nomatch
.
Local
Arguments
ucmra_op
_
!
_
!
_
/
:
simpl
nomatch
.
Lemma
list_lookup_opM
l
mk
i
:
(
l
⋅
?
mk
)
!!
i
=
l
!!
i
⋅
(
mk
≫
=
(
!!
i
)).
Proof
.
destruct
mk
;
by
rewrite
/=
?
list_lookup_op
?
right_id_L
.
Qed
.
Global
Instance
list_op_nil_l
:
LeftId
(
=
)
(
@
nil
A
)
op
.
Proof
.
done
.
Qed
.
Global
Instance
list_op_nil_r
:
RightId
(
=
)
(
@
nil
A
)
op
.
Proof
.
by
intros
[].
Qed
.
Lemma
list_op_app
l1
l2
l3
:
length
l2
≤
length
l1
→
(
l1
++
l3
)
⋅
l2
=
(
l1
⋅
l2
)
++
l3
.
(
l1
++
l3
)
⋅
l2
=
(
l1
⋅
take
(
length
l1
)
l2
)
++
(
l3
⋅
drop
(
length
l1
)
l2
)
.
Proof
.
revert
l2
l3
.
induction
l1
as
[
|
x1
l1
]
=>
-
[
|
x2
l2
]
[
|
x3
l3
]
?
;
f_equal
/=
;
auto
with
lia
.
induction
l1
as
[
|
x1
l1
]
=>
-
[
|
x2
l2
]
[
|
x3
l3
];
f_equal
/=
;
auto
.
Qed
.
Lemma
list_op_app_le
l1
l2
l3
:
length
l2
≤
length
l1
→
(
l1
++
l3
)
⋅
l2
=
(
l1
⋅
l2
)
++
l3
.
Proof
.
intros
?
.
by
rewrite
list_op_app
take_ge
// drop_ge // right_id_L. Qed.
Lemma
list_lookup_validN_Some
n
l
i
x
:
✓
{
n
}
l
→
l
!!
i
≡
{
n
}
≡
Some
x
→
✓
{
n
}
x
.
Proof
.
move
=>
/
list_lookup_validN
/
(
_
i
)
=>
Hl
Hi
;
move
:
Hl
.
by
rewrite
Hi
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment