Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Joshua Yanovski
iriscoq
Commits
245e0349
Commit
245e0349
authored
Mar 11, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
start working on a one_shot construction
parent
a56e6ab8
Changes
3
Show whitespace changes
Inline
Sidebyside
Showing
3 changed files
with
98 additions
and
5 deletions
+98
5
_CoqProject
_CoqProject
+1
0
algebra/frac.v
algebra/frac.v
+4
5
algebra/one_shot.v
algebra/one_shot.v
+93
0
No files found.
_CoqProject
View file @
245e0349
...
...
@@ 54,6 +54,7 @@ algebra/upred.v
algebra/upred_tactics.v
algebra/upred_big_op.v
algebra/frac.v
algebra/one_shot.v
program_logic/model.v
program_logic/adequacy.v
program_logic/hoare_lifting.v
...
...
algebra/frac.v
View file @
245e0349
...
...
@@ 4,11 +4,10 @@ From iris.algebra Require Import upred.
Local
Arguments
validN
_
_
_
!
_
/
.
Local
Arguments
valid
_
_
!
_
/
.
Inductive
frac
(
A
:
Type
)
:=

Frac
:
Qp
→
A
→
frac
A

FracUnit
:
frac
A
.
Arguments
Frac
{
_
}
_
_.
Arguments
FracUnit
{
_
}
.
Inductive
frac
{
A
:
Type
}
:=

Frac
:
Qp
→
A
→
frac

FracUnit
:
frac
.
Arguments
frac
_
:
clear
implicits
.
Instance
maybe_Frac
{
A
}
:
Maybe2
(
@
Frac
A
)
:=
λ
x
,
match
x
with
Frac
q
a
=>
Some
(
q
,
a
)

_
=>
None
end
.
Instance:
Params
(
@
Frac
)
2.
...
...
algebra/one_shot.v
0 → 100644
View file @
245e0349
From
iris
.
algebra
Require
Export
cmra
.
From
iris
.
algebra
Require
Import
upred
.
Local
Arguments
validN
_
_
_
!
_
/
.
Local
Arguments
valid
_
_
!
_
/
.
Inductive
one_shot
{
A
:
Type
}
:=

OneShotPending
:
one_shot

Shot
:
A
→
one_shot

OneShotUnit
:
one_shot

OneShotBot
:
one_shot
.
Arguments
one_shot
_
:
clear
implicits
.
Instance
maybe_Shot
{
A
}
:
Maybe
(
@
Shot
A
)
:=
λ
x
,
match
x
with
Shot
a
=>
Some
a

_
=>
None
end
.
Instance:
Params
(
@
Shot
)
1.
Section
cofe
.
Context
{
A
:
cofeT
}
.
Implicit
Types
a
b
:
A
.
Implicit
Types
x
y
:
one_shot
A
.
(
*
Cofe
*
)
Inductive
one_shot_equiv
:
Equiv
(
one_shot
A
)
:=

OneShotPending_equiv
:
OneShotPending
≡
OneShotPending

OneShot_equiv
a
b
:
a
≡
b
→
Shot
a
≡
Shot
b

OneShotUnit_equiv
:
OneShotUnit
≡
OneShotUnit

OneShotBot_equiv
:
OneShotBot
≡
OneShotBot
.
Existing
Instance
one_shot_equiv
.
Inductive
one_shot_dist
:
Dist
(
one_shot
A
)
:=

OneShotPending_dist
n
:
OneShotPending
≡
{
n
}
≡
OneShotPending

OneShot_dist
n
a
b
:
a
≡
{
n
}
≡
b
→
Shot
a
≡
{
n
}
≡
Shot
b

OneShotUnit_dist
n
:
OneShotUnit
≡
{
n
}
≡
OneShotUnit

OneShotBot_dist
n
:
OneShotBot
≡
{
n
}
≡
OneShotBot
.
Existing
Instance
one_shot_dist
.
Global
Instance
One_Shot_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(
@
Shot
A
).
Proof
.
by
constructor
.
Qed
.
Global
Instance
One_Shot_proper
:
Proper
((
≡
)
==>
(
≡
))
(
@
Shot
A
).
Proof
.
by
constructor
.
Qed
.
Global
Instance
One_Shot_inj
:
Inj
(
≡
)
(
≡
)
(
@
Shot
A
).
Proof
.
by
inversion_clear
1.
Qed
.
Global
Instance
One_Shot_dist_inj
n
:
Inj
(
dist
n
)
(
dist
n
)
(
@
Shot
A
).
Proof
.
by
inversion_clear
1.
Qed
.
Program
Definition
one_shot_chain
(
c
:
chain
(
one_shot
A
))
(
a
:
A
)
(
H
:
maybe
Shot
(
c
0
)
=
Some
a
)
:
chain
A
:=
{
chain_car
n
:=
match
c
n
return
_
with
Shot
b
=>
b

_
=>
a
end
}
.
Next
Obligation
.
intros
c
a
?
n
i
?
;
simpl
.
destruct
(
c
0
)
eqn
:?
;
simplify_eq
/=
.
by
feed
inversion
(
chain_cauchy
c
n
i
).
Qed
.
Instance
one_shot_compl
:
Compl
(
one_shot
A
)
:=
λ
c
,
match
Some_dec
(
maybe
Shot
(
c
0
))
with

inleft
(
exist
a
H
)
=>
Shot
(
compl
(
one_shot_chain
c
a
H
))

inright
_
=>
c
0
end
.
Definition
one_shot_cofe_mixin
:
CofeMixin
(
one_shot
A
).
Proof
.
split
.

intros
mx
my
;
split
.
+
by
destruct
1
;
subst
;
constructor
;
try
apply
equiv_dist
.
+
intros
Hxy
;
feed
inversion
(
Hxy
0
);
subst
;
constructor
;
try
done
.
apply
equiv_dist
=>
n
;
by
feed
inversion
(
Hxy
n
).

intros
n
;
split
.
+
by
intros
[

a


];
constructor
.
+
by
destruct
1
;
constructor
.
+
destruct
1
;
inversion_clear
1
;
constructor
;
etrans
;
eauto
.

by
inversion_clear
1
;
constructor
;
done

apply
dist_S
.

intros
n
c
;
unfold
compl
,
one_shot_compl
.
destruct
(
Some_dec
(
maybe
Shot
(
c
0
)))
as
[[
a
Hx
]

].
{
assert
(
c
0
=
Shot
a
)
by
(
by
destruct
(
c
0
);
simplify_eq
/=
).
assert
(
∃
b
,
c
n
=
Shot
b
)
as
[
y
Hy
].
{
feed
inversion
(
chain_cauchy
c
0
n
);
eauto
with
lia
congruence
f_equal
.
}
rewrite
Hy
;
constructor
;
auto
.
by
rewrite
(
conv_compl
n
(
one_shot_chain
c
a
Hx
))
/=
Hy
.
}
feed
inversion
(
chain_cauchy
c
0
n
);
first
lia
;
constructor
;
destruct
(
c
0
);
simplify_eq
/=
.
Qed
.
Canonical
Structure
one_shotC
:
cofeT
:=
CofeT
one_shot_cofe_mixin
.
Global
Instance
one_shot_discrete
:
Discrete
A
→
Discrete
one_shotC
.
Proof
.
by
inversion_clear
2
;
constructor
;
done

apply
(
timeless
_
).
Qed
.
Global
Instance
one_shot_leibniz
:
LeibnizEquiv
A
→
LeibnizEquiv
(
one_shot
A
).
Proof
.
by
destruct
2
;
f_equal
;
done

apply
leibniz_equiv
.
Qed
.
Global
Instance
Shot_timeless
(
a
:
A
)
:
Timeless
a
→
Timeless
(
Shot
a
).
Proof
.
by
inversion_clear
2
;
constructor
;
done

apply
(
timeless
_
).
Qed
.
Global
Instance
OneShotUnit_timeless
:
Timeless
(
@
OneShotUnit
A
).
Proof
.
by
inversion_clear
1
;
constructor
.
Qed
.
End
cofe
.
Arguments
one_shotC
:
clear
implicits
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment