Commit 176a588c authored by Robbert Krebbers's avatar Robbert Krebbers

New definition of contractive.

Using this new definition we can express being contractive using a
Proper. This has the following advantages:

- It makes it easier to state that a function with multiple arguments
  is contractive (in all or some arguments).
- A solve_contractive tactic can be implemented by extending the
  solve_proper tactic.
parent ecd304f2
...@@ -83,6 +83,11 @@ Record chain (A : ofeT) := { ...@@ -83,6 +83,11 @@ Record chain (A : ofeT) := {
Arguments chain_car {_} _ _. Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _. Arguments chain_cauchy {_} _ _ _ _.
Program Definition chain_map {A B : ofeT} (f : A B)
`{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
{| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.
Notation Compl A := (chain A%type A). Notation Compl A := (chain A%type A).
Class Cofe (A : ofeT) := { Class Cofe (A : ofeT) := {
compl : Compl A; compl : Compl A;
...@@ -140,8 +145,14 @@ Section cofe. ...@@ -140,8 +145,14 @@ Section cofe.
End cofe. End cofe.
(** Contractive functions *) (** Contractive functions *)
Class Contractive {A B : ofeT} (f : A B) := Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
contractive n x y : ( i, i < n x {i} y) f x {n} f y. match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.
Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.
Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x). Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
Proof. by intros n y1 y2. Qed. Proof. by intros n y1 y2. Qed.
...@@ -151,9 +162,9 @@ Section contractive. ...@@ -151,9 +162,9 @@ Section contractive.
Implicit Types x y : A. Implicit Types x y : A.
Lemma contractive_0 x y : f x {0} f y. Lemma contractive_0 x y : f x {0} f y.
Proof. eauto using contractive with omega. Qed. Proof. by apply (_ : Contractive f). Qed.
Lemma contractive_S n x y : x {n} y f x {S n} f y. Lemma contractive_S n x y : x {n} y f x {S n} f y.
Proof. eauto using contractive, dist_le with omega. Qed. Proof. intros. by apply (_ : Contractive f). Qed.
Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100. Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100.
Proof. by intros x y ?; apply dist_S, contractive_S. Qed. Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
...@@ -161,18 +172,27 @@ Section contractive. ...@@ -161,18 +172,27 @@ Section contractive.
Proof. apply (ne_proper _). Qed. Proof. apply (ne_proper _). Qed.
End contractive. End contractive.
(** Mapping a chain *) Ltac f_contractive :=
Program Definition chain_map {A B : ofeT} (f : A B) match goal with
`{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B := | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
{| chain_car n := f (c n) |}. | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed. | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
end;
try match goal with
| |- dist_later ?n ?x ?y => destruct n as [|n]; [done|change (x {n} y)]
end;
try reflexivity.
Ltac solve_contractive :=
preprocess_solve_proper;
solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
(** Fixpoint *) (** Fixpoint *)
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A A) Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A A)
`{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}. `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Next Obligation. Next Obligation.
intros A ? f ? n. intros A ? f ? n.
induction n as [|n IH]; intros [|i] ?; simpl in *; try reflexivity || omega. induction n as [|n IH]=> -[|i] //= ?; try omega.
- apply (contractive_0 f). - apply (contractive_0 f).
- apply (contractive_S f), IH; auto with omega. - apply (contractive_S f), IH; auto with omega.
Qed. Qed.
...@@ -513,7 +533,7 @@ Instance ofe_morCF_contractive F1 F2 : ...@@ -513,7 +533,7 @@ Instance ofe_morCF_contractive F1 F2 :
cFunctorContractive (ofe_morCF F1 F2). cFunctorContractive (ofe_morCF F1 F2).
Proof. Proof.
intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *. intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
apply ofe_morC_map_ne; apply cFunctor_contractive=>i ?; split; by apply Hfg. apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
Qed. Qed.
(** Sum *) (** Sum *)
...@@ -606,6 +626,7 @@ Qed. ...@@ -606,6 +626,7 @@ Qed.
(** Discrete cofe *) (** Discrete cofe *)
Section discrete_cofe. Section discrete_cofe.
Context `{Equiv A, @Equivalence A ()}. Context `{Equiv A, @Equivalence A ()}.
Instance discrete_dist : Dist A := λ n x y, x y. Instance discrete_dist : Dist A := λ n x y, x y.
Definition discrete_ofe_mixin : OfeMixin A. Definition discrete_ofe_mixin : OfeMixin A.
Proof. Proof.
...@@ -614,7 +635,7 @@ Section discrete_cofe. ...@@ -614,7 +635,7 @@ Section discrete_cofe.
- done. - done.
- done. - done.
Qed. Qed.
Global Program Instance discrete_cofe : Cofe (OfeT A discrete_ofe_mixin) := Global Program Instance discrete_cofe : Cofe (OfeT A discrete_ofe_mixin) :=
{ compl c := c 0 }. { compl c := c 0 }.
Next Obligation. Next Obligation.
...@@ -743,17 +764,17 @@ Section later. ...@@ -743,17 +764,17 @@ Section later.
Context {A : ofeT}. Context {A : ofeT}.
Instance later_equiv : Equiv (later A) := λ x y, later_car x later_car y. Instance later_equiv : Equiv (later A) := λ x y, later_car x later_car y.
Instance later_dist : Dist (later A) := λ n x y, Instance later_dist : Dist (later A) := λ n x y,
match n with 0 => True | S n => later_car x {n} later_car y end. dist_later n (later_car x) (later_car y).
Definition later_ofe_mixin : OfeMixin (later A). Definition later_ofe_mixin : OfeMixin (later A).
Proof. Proof.
split. split.
- intros x y; unfold equiv, later_equiv; rewrite !equiv_dist. - intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)). split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
- intros [|n]; [by split|split]; unfold dist, later_dist. - split; rewrite /dist /later_dist.
+ by intros [x]. + by intros [x].
+ by intros [x] [y]. + by intros [x] [y].
+ by intros [x] [y] [z] ??; trans y. + by intros [x] [y] [z] ??; trans y.
- intros [|n] [x] [y] ?; [done|]; unfold dist, later_dist; by apply dist_S. - intros [|n] [x] [y] ?; [done|]; rewrite /dist /later_dist; by apply dist_S.
Qed. Qed.
Canonical Structure laterC : ofeT := OfeT (later A) later_ofe_mixin. Canonical Structure laterC : ofeT := OfeT (later A) later_ofe_mixin.
...@@ -767,9 +788,13 @@ Section later. ...@@ -767,9 +788,13 @@ Section later.
Qed. Qed.
Global Instance Next_contractive : Contractive (@Next A). Global Instance Next_contractive : Contractive (@Next A).
Proof. intros [|n] x y Hxy; [done|]; apply Hxy; lia. Qed. Proof. by intros [|n] x y. Qed.
Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A). Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A).
Proof. by intros x y. Qed. Proof. by intros x y. Qed.
Lemma contractive_alt {B : ofeT} (f : A B) :
Contractive f ( n x y, Next x {n} Next y f x {n} f y).
Proof. done. Qed.
End later. End later.
Arguments laterC : clear implicits. Arguments laterC : clear implicits.
...@@ -812,8 +837,8 @@ Qed. ...@@ -812,8 +837,8 @@ Qed.
Instance laterCF_contractive F : cFunctorContractive (laterCF F). Instance laterCF_contractive F : cFunctorContractive (laterCF F).
Proof. Proof.
intros A1 A2 B1 B2 n fg fg' Hfg. intros A1 A2 B1 B2 n fg fg' Hfg. apply laterC_map_contractive.
apply laterC_map_contractive => i ?. by apply cFunctor_ne, Hfg. destruct n as [|n]; simpl in *; first done. apply cFunctor_ne, Hfg.
Qed. Qed.
(** Notation for writing functors *) (** Notation for writing functors *)
......
...@@ -78,7 +78,7 @@ Qed. ...@@ -78,7 +78,7 @@ Qed.
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set. Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Proof. Proof.
intros S1 S2 HS T1 T2 HT. rewrite /up_set. intros S1 S2 HS T1 T2 HT. rewrite /up_set.
f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving. f_equiv=> // s1 s2 Hs. by apply up_preserving.
Qed. Qed.
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set. Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Proof. Proof.
......
...@@ -47,17 +47,17 @@ Global Instance box_own_prop_ne n γ : Proper (dist n ==> dist n) (box_own_prop ...@@ -47,17 +47,17 @@ Global Instance box_own_prop_ne n γ : Proper (dist n ==> dist n) (box_own_prop
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance box_inv_ne n γ : Proper (dist n ==> dist n) (slice_inv γ). Global Instance box_inv_ne n γ : Proper (dist n ==> dist n) (slice_inv γ).
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance slice_ne n γ : Proper (dist n ==> dist n) (slice N γ). Global Instance slice_ne n γ : Proper (dist n ==> dist n) (slice N γ).
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance box_contractive f : Contractive (box N f).
Proof.
intros n P1 P2 HP1P2. apply exist_ne. intros Φ. f_equiv; last done.
apply contractive. intros n' ?. by rewrite HP1P2.
Qed.
Global Instance slice_persistent γ P : PersistentP (slice N γ P). Global Instance slice_persistent γ P : PersistentP (slice N γ P).
Proof. apply _. Qed. Proof. apply _. Qed.
Global Instance box_contractive f : Contractive (box N f).
Proof. solve_contractive. Qed.
Global Instance box_ne n f : Proper (dist n ==> dist n) (box N f).
Proof. apply (contractive_ne _). Qed.
Lemma box_own_auth_agree γ b1 b2 : Lemma box_own_auth_agree γ b1 b2 :
box_own_auth γ ( Excl' b1) box_own_auth γ ( Excl' b2) b1 = b2. box_own_auth γ ( Excl' b1) box_own_auth γ ( Excl' b2) b1 = b2.
Proof. Proof.
......
...@@ -55,7 +55,6 @@ Section fractional. ...@@ -55,7 +55,6 @@ Section fractional.
Proof. done. Qed. Proof. done. Qed.
(** Proof mode instances *) (** Proof mode instances *)
Global Instance from_sep_fractional_fwd P P1 P2 Φ q1 q2 : Global Instance from_sep_fractional_fwd P P1 P2 Φ q1 q2 :
AsFractional P Φ (q1 + q2) Fractional Φ AsFractional P Φ (q1 + q2) Fractional Φ
AsFractional P1 Φ q1 AsFractional P2 Φ q2 AsFractional P1 Φ q1 AsFractional P2 Φ q2
...@@ -97,12 +96,11 @@ Section fractional. ...@@ -97,12 +96,11 @@ Section fractional.
AsFractional R Φ r AsFractional PP' Φ (p + p') Fractional Φ AsFractional R Φ r AsFractional PP' Φ (p + p') Fractional Φ
Frame R (Φ p') Q MakeSep (Φ p) Q PQ Frame R PP' PQ. Frame R (Φ p') Q MakeSep (Φ p) Q PQ Frame R PP' PQ.
Proof. Proof.
rewrite /Frame=>->->-><-<-. rewrite !assoc. f_equiv. by rewrite comm. done. rewrite /Frame=>->->-><-<-. rewrite !assoc. f_equiv. by rewrite comm.
Qed. Qed.
Global Instance frame_fractional_half P Q R Φ p: Global Instance frame_fractional_half P Q R Φ p:
AsFractional R Φ (p/2) AsFractional P Φ p Fractional Φ AsFractional R Φ (p/2) AsFractional P Φ p Fractional Φ
AsFractional Q Φ (p/2)%Qp AsFractional Q Φ (p/2)%Qp
Frame R P Q. Frame R P Q.
Proof. by rewrite /Frame -{2}(Qp_div_2 p)=>->->->->. Qed. Proof. by rewrite /Frame -{2}(Qp_div_2 p)=>->->->->. Qed.
End fractional. End fractional.
...@@ -44,11 +44,10 @@ Context `{invG Σ}. ...@@ -44,11 +44,10 @@ Context `{invG Σ}.
Implicit Types P : iProp Σ. Implicit Types P : iProp Σ.
(* Invariants *) (* Invariants *)
Instance invariant_unfold_contractive : Contractive (@invariant_unfold Σ).
Proof. solve_contractive. Qed.
Global Instance ownI_contractive i : Contractive (@ownI Σ _ i). Global Instance ownI_contractive i : Contractive (@ownI Σ _ i).
Proof. Proof. solve_contractive. Qed.
intros n P Q HPQ. rewrite /ownI /invariant_unfold. do 4 f_equiv.
apply Next_contractive=> j ?; by rewrite (HPQ j).
Qed.
Global Instance ownI_persistent i P : PersistentP (ownI i P). Global Instance ownI_persistent i P : PersistentP (ownI i P).
Proof. rewrite /ownI. apply _. Qed. Proof. rewrite /ownI. apply _. Qed.
......
...@@ -284,8 +284,8 @@ Proof. ...@@ -284,8 +284,8 @@ Proof.
Qed. Qed.
Global Instance later_contractive : Contractive (@uPred_later M). Global Instance later_contractive : Contractive (@uPred_later M).
Proof. Proof.
intros n P Q HPQ; unseal; split=> -[|n'] x ??; simpl; [done|]. unseal; intros [|n] P Q HPQ; split=> -[|n'] x ?? //=; try omega.
apply (HPQ n'); eauto using cmra_validN_S. apply HPQ; eauto using cmra_validN_S.
Qed. Qed.
Global Instance later_proper' : Global Instance later_proper' :
Proper ((⊣⊢) ==> (⊣⊢)) (@uPred_later M) := ne_proper _. Proper ((⊣⊢) ==> (⊣⊢)) (@uPred_later M) := ne_proper _.
...@@ -583,12 +583,11 @@ Proof. unseal. by destruct mx. Qed. ...@@ -583,12 +583,11 @@ Proof. unseal. by destruct mx. Qed.
(* Contractive functions *) (* Contractive functions *)
Lemma contractiveI {A B : ofeT} (f : A B) : Lemma contractiveI {A B : ofeT} (f : A B) :
Contractive f ( x y, (x y) f x f y). Contractive f ( a b, (a b) f a f b).
Proof. Proof.
split; unseal; intros Hf. split; unseal; intros Hf.
- intros x y; split=> -[|n] z _ /=; eauto using contractive_0, contractive_S. - intros a b; split=> n x _; apply Hf.
- intros [|i] x y Hxy; apply (uPred_in_entails _ _ (Hf x y) _ ); - intros i a b; eapply Hf, ucmra_unit_validN.
simpl; eauto using ucmra_unit_validN.
Qed. Qed.
(* Functions *) (* Functions *)
......
...@@ -118,8 +118,8 @@ Qed. ...@@ -118,8 +118,8 @@ Qed.
Instance uPredCF_contractive F : Instance uPredCF_contractive F :
urFunctorContractive F cFunctorContractive (uPredCF F). urFunctorContractive F cFunctorContractive (uPredCF F).
Proof. Proof.
intros ? A1 A2 B1 B2 n P Q HPQ. intros ? A1 A2 B1 B2 n P Q HPQ. apply uPredC_map_ne, urFunctor_contractive.
apply uPredC_map_ne, urFunctor_contractive=> i ?; split; by apply HPQ. destruct n; split; by apply HPQ.
Qed. Qed.
(** logical entailement *) (** logical entailement *)
......
...@@ -185,8 +185,8 @@ Proof. ...@@ -185,8 +185,8 @@ Proof.
rewrite !map_to_list_insert, !bind_cons rewrite !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX). by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH. rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
rewrite (assoc_L _); f_equiv; [rewrite (comm _); simpl|done]. rewrite (assoc_L _). f_equiv.
by rewrite replicate_plus, Permutation_middle. rewrite (comm _); simpl. by rewrite replicate_plus, Permutation_middle.
- rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons - rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?HX, ?HY). by (by rewrite ?lookup_union_with, ?HX, ?HY).
by rewrite <-(assoc_L (++)), <-IH. by rewrite <-(assoc_L (++)), <-IH.
......
...@@ -273,6 +273,7 @@ favor the second because the relation (dist) stays the same. *) ...@@ -273,6 +273,7 @@ favor the second because the relation (dist) stays the same. *)
Ltac f_equiv := Ltac f_equiv :=
match goal with match goal with
| _ => reflexivity | _ => reflexivity
| |- pointwise_relation _ _ _ _ => intros ?
(* We support matches on both sides, *if* they concern the same variable, or (* We support matches on both sides, *if* they concern the same variable, or
variables in some relation. *) variables in some relation. *)
| |- ?R (match ?x with _ => _ end) (match ?x with _ => _ end) => | |- ?R (match ?x with _ => _ end) (match ?x with _ => _ end) =>
...@@ -301,26 +302,12 @@ Ltac f_equiv := ...@@ -301,26 +302,12 @@ Ltac f_equiv :=
(* In case the function symbol differs, but the arguments are the same, (* In case the function symbol differs, but the arguments are the same,
maybe we have a pointwise_relation in our context. *) maybe we have a pointwise_relation in our context. *)
| H : pointwise_relation _ ?R ?f ?g |- ?R (?f ?x) (?g ?x) => apply H | H : pointwise_relation _ ?R ?f ?g |- ?R (?f ?x) (?g ?x) => apply H
end.
(** auto_proper solves goals of the form "f _ = f _", for any relation and any
number of arguments, by repeatedly applying f_equiv and handling trivial cases.
If it cannot solve an equality, it will leave that to the user. *)
Ltac auto_equiv :=
(* Deal with "pointwise_relation" *)
repeat lazymatch goal with
| |- pointwise_relation _ _ _ _ => intros ?
end; end;
(* Normalize away equalities. *) try reflexivity.
simplify_eq;
(* repeatedly apply congruence lemmas and use the equalities in the hypotheses. *) (* The tactic [preprocess_solve_proper] unfolds the first head symbol, so that
try (f_equiv; fast_done || auto_equiv). we proceed by repeatedly using [f_equiv]. *)
Ltac preprocess_solve_proper :=
(** solve_proper solves goals of the form "Proper (R1 ==> R2)", for any
number of relations. All the actual work is done by auto_equiv;
solve_proper just introduces the assumptions and unfolds the first
head symbol. *)
Ltac solve_proper :=
(* Introduce everything *) (* Introduce everything *)
intros; intros;
repeat lazymatch goal with repeat lazymatch goal with
...@@ -340,7 +327,14 @@ Ltac solve_proper := ...@@ -340,7 +327,14 @@ Ltac solve_proper :=
| |- ?R (?f _ _) (?f _ _) => unfold f | |- ?R (?f _ _) (?f _ _) => unfold f
| |- ?R (?f _) (?f _) => unfold f | |- ?R (?f _) (?f _) => unfold f
end; end;
solve [ auto_equiv ]. simplify_eq.
(** The tactic [solve_proper] solves goals of the form "Proper (R1 ==> R2)", for
any number of relations. The actual work is done by repeatedly applying
[f_equiv]. *)
Ltac solve_proper :=
preprocess_solve_proper;
solve [repeat (f_equiv; try eassumption)].
(** The tactic [intros_revert tac] introduces all foralls/arrows, performs tac, (** The tactic [intros_revert tac] introduces all foralls/arrows, performs tac,
and then reverts them. *) and then reverts them. *)
......
...@@ -37,11 +37,7 @@ Definition wp_pre `{irisG Λ Σ} ...@@ -37,11 +37,7 @@ Definition wp_pre `{irisG Λ Σ}
Local Instance wp_pre_contractive `{irisG Λ Σ} : Contractive wp_pre. Local Instance wp_pre_contractive `{irisG Λ Σ} : Contractive wp_pre.
Proof. Proof.
rewrite /wp_pre=> n wp wp' Hwp E e1 Φ. rewrite /wp_pre=> n wp wp' Hwp E e1 Φ.
apply or_ne, and_ne, forall_ne; auto=> σ1; apply wand_ne; auto. repeat (f_contractive || f_equiv); apply Hwp.
apply fupd_ne, sep_ne, later_contractive; auto=> i ?.
apply forall_ne=> e2; apply forall_ne=> σ2; apply forall_ne=> efs.
apply wand_ne, fupd_ne, sep_ne, sep_ne; auto; first by apply Hwp.
apply big_opL_ne=> ? ef. by apply Hwp.
Qed. Qed.
Definition wp_def `{irisG Λ Σ} : Definition wp_def `{irisG Λ Σ} :
...@@ -138,12 +134,12 @@ Global Instance wp_ne E e n : ...@@ -138,12 +134,12 @@ Global Instance wp_ne E e n :
Proper (pointwise_relation _ (dist n) ==> dist n) (@wp Λ Σ _ E e). Proper (pointwise_relation _ (dist n) ==> dist n) (@wp Λ Σ _ E e).
Proof. Proof.
revert e. induction (lt_wf n) as [n _ IH]=> e Φ Ψ HΦ. revert e. induction (lt_wf n) as [n _ IH]=> e Φ Ψ HΦ.
rewrite !wp_unfold /wp_pre. apply or_ne, and_ne; auto; first solve_proper. rewrite !wp_unfold /wp_pre.
apply forall_ne=> σ1. (* FIXME: figure out a way to properly automate this proof *)
apply wand_ne, fupd_ne, sep_ne, later_contractive; auto=> i ?. (* FIXME: reflexivity, as being called many times by f_equiv and f_contractive
apply forall_ne=> e2; apply forall_ne=> σ2; apply forall_ne=> ef. is very slow here *)
apply wand_ne, fupd_ne, sep_ne, sep_ne; auto. do 18 (f_contractive || f_equiv). apply IH; first lia.
apply IH; [done|]=> v. eapply dist_le; eauto with omega. intros v. eapply dist_le; eauto with omega.
Qed. Qed.
Global Instance wp_proper E e : Global Instance wp_proper E e :
Proper (pointwise_relation _ () ==> ()) (@wp Λ Σ _ E e). Proper (pointwise_relation _ () ==> ()) (@wp Λ Σ _ E e).
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment