Commit 15c368d5 by Robbert Krebbers

### Remove sum2bool.

parent 0c801b09
 ... ... @@ -135,20 +135,13 @@ Definition un_op_eval (op : un_op) (l : base_lit) : option base_lit := | _, _ => None end. (* FIXME RJ I am *sure* this already exists somewhere... but I can't find it. *) Definition sum2bool {A B} (x : { A } + { B }) : bool := match x with | left _ => true | right _ => false end. Definition bin_op_eval (op : bin_op) (l1 l2 : base_lit) : option base_lit := match op, l1, l2 with | PlusOp, LitNat n1, LitNat n2 => Some \$ LitNat (n1 + n2) | MinusOp, LitNat n1, LitNat n2 => Some \$ LitNat (n1 - n2) | LeOp, LitNat n1, LitNat n2 => Some \$ LitBool \$ sum2bool \$ decide (n1 ≤ n2) | LtOp, LitNat n1, LitNat n2 => Some \$ LitBool \$ sum2bool \$ decide (n1 < n2) | EqOp, LitNat n1, LitNat n2 => Some \$ LitBool \$ sum2bool \$ decide (n1 = n2) | LeOp, LitNat n1, LitNat n2 => Some \$ LitBool \$ bool_decide (n1 ≤ n2) | LtOp, LitNat n1, LitNat n2 => Some \$ LitBool \$ bool_decide (n1 < n2) | EqOp, LitNat n1, LitNat n2 => Some \$ LitBool \$ bool_decide (n1 = n2) | _, _, _ => None end. ... ...
 ... ... @@ -101,7 +101,7 @@ Lemma wp_le E (n1 n2 : nat) P Q : P ⊑ wp E (BinOp LeOp (Lit n1) (Lit n2)) Q. Proof. intros ? ?. rewrite -wp_bin_op //; []. destruct (decide _); by eauto with omega. destruct (bool_decide_reflect (n1 ≤ n2)); by eauto with omega. Qed. Lemma wp_lt E (n1 n2 : nat) P Q : ... ... @@ -110,7 +110,7 @@ Lemma wp_lt E (n1 n2 : nat) P Q : P ⊑ wp E (BinOp LtOp (Lit n1) (Lit n2)) Q. Proof. intros ? ?. rewrite -wp_bin_op //; []. destruct (decide _); by eauto with omega. destruct (bool_decide_reflect (n1 < n2)); by eauto with omega. Qed. Lemma wp_eq E (n1 n2 : nat) P Q : ... ... @@ -119,7 +119,7 @@ Lemma wp_eq E (n1 n2 : nat) P Q : P ⊑ wp E (BinOp EqOp (Lit n1) (Lit n2)) Q. Proof. intros ? ?. rewrite -wp_bin_op //; []. destruct (decide _); by eauto with omega. destruct (bool_decide_reflect (n1 = n2)); by eauto with omega. Qed. End suger.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!