Commit 05290985 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Local and FP updates starting with empty gset.

parent 13e7b1b5
......@@ -68,13 +68,27 @@ Section gset.
Lemma gset_alloc_updateP (Q : gset_disj K Prop) X :
( i, i X Q (GSet ({[i]} X))) GSet X ~~>: Q.
Proof. move=>??. eapply gset_alloc_updateP_strong with (I:=); by eauto. Qed.
Proof. intro. eapply gset_alloc_updateP_strong with (I:=); eauto. Qed.
Lemma gset_alloc_updateP_strong' (I : gset K) X :
GSet X ~~>: λ Y, i, Y = GSet ({[ i ]} X) i I i X.
Proof. eauto using gset_alloc_updateP_strong. Qed.
Lemma gset_alloc_updateP' X : GSet X ~~>: λ Y, i, Y = GSet ({[ i ]} X) i X.
Proof. eauto using gset_alloc_updateP. Qed.
Lemma gset_alloc_empty_updateP_strong (Q : gset_disj K Prop) (I : gset K) :
( i, i I Q (GSet {[i]})) GSet ~~>: Q.
intros. apply (gset_alloc_updateP_strong _ I)=> i. rewrite right_id_L. auto.
Lemma gset_alloc_empty_updateP (Q : gset_disj K Prop) :
( i, Q (GSet {[i]})) GSet ~~>: Q.
Proof. intro. eapply gset_alloc_empty_updateP_strong with (I:=); eauto. Qed.
Lemma gset_alloc_empty_updateP_strong' (I : gset K) :
GSet ~~>: λ Y, i, Y = GSet {[ i ]} i I.
Proof. eauto using gset_alloc_empty_updateP_strong. Qed.
Lemma gset_alloc_empty_updateP' : GSet ~~>: λ Y, i, Y = GSet {[ i ]}.
Proof. eauto using gset_alloc_empty_updateP. Qed.
Lemma gset_alloc_local_update X i Xf :
i X i Xf GSet X ~l~> GSet ({[i]} X) @ Some (GSet Xf).
......@@ -83,6 +97,12 @@ Section gset.
- intros mZ ?%gset_disj_valid_op HXf.
rewrite -gset_disj_union -?assoc ?HXf ?cmra_opM_assoc; set_solver.
Lemma gset_alloc_empty_local_update i Xf :
i Xf GSet ~l~> GSet {[i]} @ Some (GSet Xf).
intros. rewrite -(right_id_L _ _ {[i]}).
apply gset_alloc_local_update; set_solver.
End gset.
Arguments gset_disjR _ {_ _}.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment