cofe.v 14.6 KB
Newer Older
1
Require Export algebra.base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2 3 4

(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
5
Instance: Params (@dist) 3.
6 7 8 9
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
Hint Extern 0 (?x {_} ?y) => reflexivity.
Hint Extern 0 (_ {_} _) => symmetry; assumption.
10 11 12 13 14 15 16 17

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
  | _ => progress simplify_equality'
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
18 19
  repeat match goal with
  | _ => progress simplify_equality'
20 21
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
22
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
23 24 25

Record chain (A : Type) `{Dist A} := {
  chain_car :> nat  A;
26
  chain_cauchy n i : n  i  chain_car n {n} chain_car i
Robbert Krebbers's avatar
Robbert Krebbers committed
27 28 29 30 31
}.
Arguments chain_car {_ _} _ _.
Arguments chain_cauchy {_ _} _ _ _ _.
Class Compl A `{Dist A} := compl : chain A  A.

32
Record CofeMixin A `{Equiv A, Compl A} := {
33
  mixin_equiv_dist x y : x  y   n, x {n} y;
34
  mixin_dist_equivalence n : Equivalence (dist n);
35 36 37
  mixin_dist_S n x y : x {S n} y  x {n} y;
  mixin_dist_0 x y : x {0} y;
  mixin_conv_compl (c : chain A) n : compl c {n} c n
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40 41 42 43 44 45 46 47
}.
Class Contractive `{Dist A, Dist B} (f : A -> B) :=
  contractive n : Proper (dist n ==> dist (S n)) f.

(** Bundeled version *)
Structure cofeT := CofeT {
  cofe_car :> Type;
  cofe_equiv : Equiv cofe_car;
  cofe_dist : Dist cofe_car;
  cofe_compl : Compl cofe_car;
48
  cofe_mixin : CofeMixin cofe_car
Robbert Krebbers's avatar
Robbert Krebbers committed
49
}.
50
Arguments CofeT {_ _ _ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
51
Add Printing Constructor cofeT.
52 53 54 55 56 57 58 59 60 61 62
Existing Instances cofe_equiv cofe_dist cofe_compl.
Arguments cofe_car : simpl never.
Arguments cofe_equiv : simpl never.
Arguments cofe_dist : simpl never.
Arguments cofe_compl : simpl never.
Arguments cofe_mixin : simpl never.

(** Lifting properties from the mixin *)
Section cofe_mixin.
  Context {A : cofeT}.
  Implicit Types x y : A.
63
  Lemma equiv_dist x y : x  y   n, x {n} y.
64 65 66
  Proof. apply (mixin_equiv_dist _ (cofe_mixin A)). Qed.
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
  Proof. apply (mixin_dist_equivalence _ (cofe_mixin A)). Qed.
67
  Lemma dist_S n x y : x {S n} y  x {n} y.
68
  Proof. apply (mixin_dist_S _ (cofe_mixin A)). Qed.
69
  Lemma dist_0 x y : x {0} y.
70
  Proof. apply (mixin_dist_0 _ (cofe_mixin A)). Qed.
71
  Lemma conv_compl (c : chain A) n : compl c {n} c n.
72 73 74
  Proof. apply (mixin_conv_compl _ (cofe_mixin A)). Qed.
End cofe_mixin.

75
Hint Extern 0 (_ {0} _) => apply dist_0.
Robbert Krebbers's avatar
Robbert Krebbers committed
76 77 78

(** General properties *)
Section cofe.
79 80
  Context {A : cofeT}.
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82 83 84 85 86 87
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
    * by intros x; rewrite equiv_dist.
    * by intros x y; rewrite !equiv_dist.
    * by intros x y z; rewrite !equiv_dist; intros; transitivity y.
  Qed.
88
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
Robbert Krebbers's avatar
Robbert Krebbers committed
91 92
    * by transitivity x1; [|transitivity y1].
    * by transitivity x2; [|transitivity y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  Qed.
94
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
95
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
97 98 99
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
100
  Lemma dist_le (x y : A) n n' : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
  Proof. induction 2; eauto using dist_S. Qed.
102
  Instance ne_proper {B : cofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
105
  Instance ne_proper_2 {B C : cofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108 109
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
111
  Qed.
112
  Lemma compl_ne (c1 c2: chain A) n : c1 n {n} c2 n  compl c1 {n} compl c2.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
  Proof. intros. by rewrite (conv_compl c1 n) (conv_compl c2 n). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115
  Lemma compl_ext (c1 c2 : chain A) : ( i, c1 i  c2 i)  compl c1  compl c2.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using compl_ne. Qed.
116
  Global Instance contractive_ne {B : cofeT} (f : A  B) `{!Contractive f} n :
117 118
    Proper (dist n ==> dist n) f | 100.
  Proof. by intros x1 x2 ?; apply dist_S, contractive. Qed.
119
  Global Instance contractive_proper {B : cofeT} (f : A  B) `{!Contractive f} :
120
    Proper (() ==> ()) f | 100 := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
121 122
End cofe.

Robbert Krebbers's avatar
Robbert Krebbers committed
123 124 125 126
(** Mapping a chain *)
Program Definition chain_map `{Dist A, Dist B} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
127
Next Obligation. by intros ? A ? B f Hf c n i ?; apply Hf, chain_cauchy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
128

Robbert Krebbers's avatar
Robbert Krebbers committed
129
(** Timeless elements *)
130
Class Timeless {A : cofeT} (x : A) := timeless y : x {1} y  x  y.
131
Arguments timeless {_} _ {_} _ _.
132
Lemma timeless_S {A : cofeT} (x y : A) n : Timeless x  x  y  x {S n} y.
133 134 135 136
Proof.
  split; intros; [by apply equiv_dist|].
  apply (timeless _), dist_le with (S n); auto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
137

Robbert Krebbers's avatar
Robbert Krebbers committed
138
(** Fixpoint *)
139
Program Definition fixpoint_chain {A : cofeT} `{Inhabited A} (f : A  A)
140
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter i f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
Next Obligation.
142
  intros A ? f ? n; induction n as [|n IH]; intros i ?; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  destruct i as [|i]; simpl; first lia; apply contractive, IH; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
Qed.
145
Program Definition fixpoint {A : cofeT} `{Inhabited A} (f : A  A)
146
  `{!Contractive f} : A := compl (fixpoint_chain f).
Robbert Krebbers's avatar
Robbert Krebbers committed
147 148

Section fixpoint.
149
  Context {A : cofeT} `{Inhabited A} (f : A  A) `{!Contractive f}.
150
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152
  Proof.
    apply equiv_dist; intros n; unfold fixpoint.
153
    rewrite (conv_compl (fixpoint_chain f) n).
Robbert Krebbers's avatar
Robbert Krebbers committed
154
    by rewrite {1}(chain_cauchy (fixpoint_chain f) n (S n)); last lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
155
  Qed.
156
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
157
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
158
  Proof.
159
    intros Hfg; unfold fixpoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
160 161
    rewrite (conv_compl (fixpoint_chain f) n) (conv_compl (fixpoint_chain g) n).
    induction n as [|n IH]; simpl in *; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163
    rewrite Hfg; apply contractive, IH; auto using dist_S.
  Qed.
164 165
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
End fixpoint.
168
Global Opaque fixpoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
169 170

(** Function space *)
Robbert Krebbers's avatar
Robbert Krebbers committed
171
Record cofeMor (A B : cofeT) : Type := CofeMor {
Robbert Krebbers's avatar
Robbert Krebbers committed
172 173 174 175 176 177 178
  cofe_mor_car :> A  B;
  cofe_mor_ne n : Proper (dist n ==> dist n) cofe_mor_car
}.
Arguments CofeMor {_ _} _ {_}.
Add Printing Constructor cofeMor.
Existing Instance cofe_mor_ne.

179 180 181 182 183
Section cofe_mor.
  Context {A B : cofeT}.
  Global Instance cofe_mor_proper (f : cofeMor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, cofe_mor_ne. Qed.
  Instance cofe_mor_equiv : Equiv (cofeMor A B) := λ f g,  x, f x  g x.
184
  Instance cofe_mor_dist : Dist (cofeMor A B) := λ n f g,  x, f x {n} g x.
185 186 187 188 189 190 191 192 193 194 195 196 197
  Program Definition fun_chain `(c : chain (cofeMor A B)) (x : A) : chain B :=
    {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Instance cofe_mor_compl : Compl (cofeMor A B) := λ c,
    {| cofe_mor_car x := compl (fun_chain c x) |}.
  Next Obligation.
    intros c n x y Hx.
    rewrite (conv_compl (fun_chain c x) n) (conv_compl (fun_chain c y) n) /= Hx.
    apply (chain_cauchy c); lia.
  Qed.
  Definition cofe_mor_cofe_mixin : CofeMixin (cofeMor A B).
  Proof.
    split.
198 199
    * intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist; intros n; apply Hfg.
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    * intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; transitivity (g x).
    * by intros n f g ? x; apply dist_S.
    * by intros f g x.
    * intros c n x; simpl.
      rewrite (conv_compl (fun_chain c x) n); apply (chain_cauchy c); lia.
  Qed.
  Canonical Structure cofe_mor : cofeT := CofeT cofe_mor_cofe_mixin.

  Global Instance cofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@cofe_mor_car A B).
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
  Global Instance cofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@cofe_mor_car A B) := ne_proper_2 _.
  Lemma cofe_mor_ext (f g : cofeMor A B) : f  g   x, f x  g x.
  Proof. done. Qed.
End cofe_mor.

Arguments cofe_mor : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
221
Infix "-n>" := cofe_mor (at level 45, right associativity).
222 223
Instance cofe_more_inhabited {A B : cofeT} `{Inhabited B} :
  Inhabited (A -n> B) := populate (CofeMor (λ _, inhabitant)).
Robbert Krebbers's avatar
Robbert Krebbers committed
224 225 226 227 228 229 230 231 232

(** Identity and composition *)
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
233
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
235 236

(** unit *)
237 238 239 240 241 242
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
  Instance unit_compl : Compl unit := λ _, ().
  Definition unit_cofe_mixin : CofeMixin unit.
  Proof. by repeat split; try exists 0. Qed.
  Canonical Structure unitC : cofeT := CofeT unit_cofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244
  Global Instance unit_timeless (x : ()) : Timeless x.
  Proof. done. Qed.
245
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
246 247

(** Product *)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
Section product.
  Context {A B : cofeT}.

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
  Instance prod_compl : Compl (A * B) := λ c,
    (compl (chain_map fst c), compl (chain_map snd c)).
  Definition prod_cofe_mixin : CofeMixin (A * B).
  Proof.
    split.
    * intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
      rewrite !equiv_dist; naive_solver.
    * apply _.
    * by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
    * by split.
    * intros c n; split. apply (conv_compl (chain_map fst c) n).
      apply (conv_compl (chain_map snd c) n).
  Qed.
  Canonical Structure prodC : cofeT := CofeT prod_cofe_mixin.
  Global Instance pair_timeless (x : A) (y : B) :
    Timeless x  Timeless y  Timeless (x,y).
  Proof. by intros ?? [x' y'] [??]; split; apply (timeless _). Qed.
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

Instance prod_map_ne {A A' B B' : cofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
279 280 281 282 283 284 285 286 287
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

288 289 290 291 292 293
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
  Instance discrete_dist : Dist A := λ n x y,
    match n with 0 => True | S n => x  y end.
  Instance discrete_compl : Compl A := λ c, c 1.
294
  Definition discrete_cofe_mixin : CofeMixin A.
295 296 297 298 299 300 301 302
  Proof.
    split.
    * intros x y; split; [by intros ? []|intros Hn; apply (Hn 1)].
    * intros [|n]; [done|apply _].
    * by intros [|n].
    * done.
    * intros c [|n]; [done|apply (chain_cauchy c 1 (S n)); lia].
  Qed.
303 304
  Definition discreteC : cofeT := CofeT discrete_cofe_mixin.
  Global Instance discrete_timeless (x : A) : Timeless (x : discreteC).
Robbert Krebbers's avatar
Robbert Krebbers committed
305
  Proof. by intros y. Qed.
306
End discrete_cofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
Arguments discreteC _ {_ _}.
308

Robbert Krebbers's avatar
Robbert Krebbers committed
309
Definition leibnizC (A : Type) : cofeT := @discreteC A equivL _.
310 311 312
Instance leibnizC_leibniz : LeibnizEquiv (leibnizC A).
Proof. by intros A x y. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
313 314
Canonical Structure natC := leibnizC nat.
Canonical Structure boolC := leibnizC bool.
315

316 317
(** Later *)
Inductive later (A : Type) : Type := Later { later_car : A }.
318
Add Printing Constructor later.
319 320
Arguments Later {_} _.
Arguments later_car {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
321 322
Lemma later_eta {A} (x : later A) : Later (later_car x) = x.
Proof. by destruct x. Qed.
323

324
Section later.
325 326 327
  Context {A : cofeT}.
  Instance later_equiv : Equiv (later A) := λ x y, later_car x  later_car y.
  Instance later_dist : Dist (later A) := λ n x y,
328
    match n with 0 => True | S n => later_car x {n} later_car y end.
329
  Program Definition later_chain (c : chain (later A)) : chain A :=
330
    {| chain_car n := later_car (c (S n)) |}.
331 332 333
  Next Obligation. intros c n i ?; apply (chain_cauchy c (S n)); lia. Qed.
  Instance later_compl : Compl (later A) := λ c, Later (compl (later_chain c)).
  Definition later_cofe_mixin : CofeMixin (later A).
334 335 336 337 338 339 340 341 342 343 344 345
  Proof.
    split.
    * intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
      split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
    * intros [|n]; [by split|split]; unfold dist, later_dist.
      + by intros [x].
      + by intros [x] [y].
      + by intros [x] [y] [z] ??; transitivity y.
    * intros [|n] [x] [y] ?; [done|]; unfold dist, later_dist; by apply dist_S.
    * done.
    * intros c [|n]; [done|by apply (conv_compl (later_chain c) n)].
  Qed.
346 347
  Canonical Structure laterC : cofeT := CofeT later_cofe_mixin.
  Global Instance Later_contractive : Contractive (@Later A).
348
  Proof. by intros n ??. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
349 350
  Global Instance Later_inj n : Injective (dist n) (dist (S n)) (@Later A).
  Proof. by intros x y. Qed.
351
End later.
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

Arguments laterC : clear implicits.

Definition later_map {A B} (f : A  B) (x : later A) : later B :=
  Later (f (later_car x)).
Instance later_map_ne {A B : cofeT} (f : A  B) n :
  Proper (dist (pred n) ==> dist (pred n)) f 
  Proper (dist n ==> dist n) (later_map f) | 0.
Proof. destruct n as [|n]; intros Hf [x] [y] ?; do 2 red; simpl; auto. Qed.
Lemma later_map_id {A} (x : later A) : later_map id x = x.
Proof. by destruct x. Qed.
Lemma later_map_compose {A B C} (f : A  B) (g : B  C) (x : later A) :
  later_map (g  f) x = later_map g (later_map f x).
Proof. by destruct x. Qed.
Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B :=
  CofeMor (later_map f).
Instance laterC_map_contractive (A B : cofeT) : Contractive (@laterC_map A B).
Proof. intros n f g Hf n'; apply Hf. Qed.