heap_lang.v 12.6 KB
Newer Older
1 2 3
From program_logic Require Export language.
From prelude Require Export strings.
From prelude Require Import gmap.
4

5
Module heap_lang.
6 7
Open Scope Z_scope.

8
(** Expressions and vals. *)
9
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
10

11
Inductive base_lit : Set :=
12
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit.
13
Inductive un_op : Set :=
14
  | NegOp | MinusUnOp.
15 16 17
Inductive bin_op : Set :=
  | PlusOp | MinusOp | LeOp | LtOp | EqOp.

Ralf Jung's avatar
Ralf Jung committed
18
Inductive expr :=
19
  (* Base lambda calculus *)
20 21
  | Var (x : string)
  | Rec (f x : string) (e : expr)
22
  | App (e1 e2 : expr)
23 24 25 26 27
  (* Base types and their operations *)
  | Lit (l : base_lit)
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
28 29 30 31 32 33 34
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
35
  | Case (e0 : expr) (x1 : string) (e1 : expr) (x2 : string) (e2 : expr)
36 37 38 39 40 41 42 43
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | Cas (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
44

45
Inductive val :=
46
  | RecV (f x : string) (e : expr) (* e should be closed *)
47
  | LitV (l : base_lit)
48 49 50 51
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
52

53 54 55
Delimit Scope lang_scope with L.
Bind Scope lang_scope with expr val.

56
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
57
  match v with
58
  | RecV f x e => Rec f x e
59
  | LitV l => Lit l
60 61 62
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
63
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
64
  end.
65
Fixpoint to_val (e : expr) : option val :=
66
  match e with
67
  | Rec f x e => Some (RecV f x e)
68
  | Lit l => Some (LitV l)
69 70 71
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
72
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
73
  | _ => None
74 75
  end.

76 77
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
78

79
(** Evaluation contexts *)
80 81 82
Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
83 84 85 86
  | UnOpCtx (op : un_op)
  | BinOpLCtx (op : bin_op) (e2 : expr)
  | BinOpRCtx (op : bin_op) (v1 : val)
  | IfCtx (e1 e2 : expr)
87 88 89 90 91 92
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
93
  | CaseCtx (x1 : string) (e1 : expr) (x2 : string) (e2 : expr)
94 95 96 97 98 99 100
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val)
  | CasLCtx (e1 : expr)  (e2 : expr)
  | CasMCtx (v0 : val) (e2 : expr)
  | CasRCtx (v0 : val) (v1 : val).
101

102
Notation ectx := (list ectx_item).
103

104
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
105 106 107
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
108 109 110 111
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
112 113 114 115 116 117
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
118
  | CaseCtx x1 e1 x2 e2 => Case e x1 e1 x2 e2
119 120 121 122 123 124 125
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
126
  end.
127
Definition fill (K : ectx) (e : expr) : expr := fold_right fill_item e K.
Ralf Jung's avatar
Ralf Jung committed
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
(** Substitution *)
(** We have [subst e "" v = e] to deal with anonymous binders *)
Fixpoint subst (e : expr) (x : string) (v : val) : expr :=
  match e with
  | Var y => if decide (x = y  x  "") then of_val v else Var y
  | Rec f y e => Rec f y (if decide (x  f  x  y) then subst e x v else e)
  | App e1 e2 => App (subst e1 x v) (subst e2 x v)
  | Lit l => Lit l
  | UnOp op e => UnOp op (subst e x v)
  | BinOp op e1 e2 => BinOp op (subst e1 x v) (subst e2 x v)
  | If e0 e1 e2 => If (subst e0 x v) (subst e1 x v) (subst e2 x v)
  | Pair e1 e2 => Pair (subst e1 x v) (subst e2 x v)
  | Fst e => Fst (subst e x v)
  | Snd e => Snd (subst e x v)
  | InjL e => InjL (subst e x v)
  | InjR e => InjR (subst e x v)
  | Case e0 x1 e1 x2 e2 =>
     Case (subst e0 x v)
       x1 (if decide (x  x1) then subst e1 x v else e1)
       x2 (if decide (x  x2) then subst e2 x v else e2)
  | Fork e => Fork (subst e x v)
  | Loc l => Loc l
  | Alloc e => Alloc (subst e x v)
  | Load e => Load (subst e x v)
  | Store e1 e2 => Store (subst e1 x v) (subst e2 x v)
  | Cas e0 e1 e2 => Cas (subst e0 x v) (subst e1 x v) (subst e2 x v)
  end.

157
(** The stepping relation *)
158 159
Definition un_op_eval (op : un_op) (l : base_lit) : option base_lit :=
  match op, l with
160
  | NegOp, LitBool b => Some (LitBool (negb b))
161
  | MinusUnOp, LitInt n => Some (LitInt (- n))
162 163 164 165 166
  | _, _ => None
  end.

Definition bin_op_eval (op : bin_op) (l1 l2 : base_lit) : option base_lit :=
  match op, l1, l2 with
167 168 169 170 171
  | PlusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 + n2)
  | MinusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 - n2)
  | LeOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1  n2)
  | LtOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 < n2)
  | EqOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 = n2)
172 173 174
  | _, _, _ => None
  end.

175
Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
176
  | BetaS f x e1 e2 v2 σ :
177
     to_val e2 = Some v2 
178 179 180
     head_step (App (Rec f x e1) e2) σ
       (subst (subst e1 f (RecV f x e1)) x v2) σ None
  | UnOpS op l l' σ :
181 182
     un_op_eval op l = Some l'  
     head_step (UnOp op (Lit l)) σ (Lit l') σ None
183
  | BinOpS op l1 l2 l' σ :
184 185 186
     bin_op_eval op l1 l2 = Some l'  
     head_step (BinOp op (Lit l1) (Lit l2)) σ (Lit l') σ None
  | IfTrueS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
187
     head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ None
188
  | IfFalseS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
189
     head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ None
190 191 192 193 194 195
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
196
  | CaseLS e0 v0 x1 e1 x2 e2 σ :
197
     to_val e0 = Some v0 
198 199
     head_step (Case (InjL e0) x1 e1 x2 e2) σ (subst e1 x1 v0) σ None
  | CaseRS e0 v0 x1 e1 x2 e2 σ :
200
     to_val e0 = Some v0 
201
     head_step (Case (InjR e0) x1 e1 x2 e2) σ (subst e2 x2 v0) σ None
202
  | ForkS e σ:
203
     head_step (Fork e) σ (Lit LitUnit) σ (Some e)
204 205 206 207 208 209 210 211
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
212
     head_step (Store (Loc l) e) σ (Lit LitUnit) (<[l:=v]>σ) None
213 214 215
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
Ralf Jung's avatar
Ralf Jung committed
216
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool false) σ None
217 218 219
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
Ralf Jung's avatar
Ralf Jung committed
220
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
221

222
(** Atomic expressions *)
223
Definition atomic (e: expr) : Prop :=
224 225 226 227 228 229 230
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
  | _ => False
  end.
231

232 233 234 235
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
Inductive prim_step
    (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
236
  Ectx_step K e1' e2' :
237 238 239 240 241 242
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof. by induction v; simplify_option_equality. Qed.
243

244
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
245
Proof.
246
  revert v; induction e; intros; simplify_option_equality; auto with f_equal.
247
Qed.
248

249 250
Instance: Inj (=) (=) of_val.
Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
251

252
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
253
Proof. destruct Ki; intros ???; simplify_equality'; auto with f_equal. Qed.
254

255
Instance ectx_fill_inj K : Inj (=) (=) (fill K).
256
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
257

258 259
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
260

261
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
262
Proof.
263 264
  intros [v' Hv']; revert v' Hv'.
  induction K as [|[]]; intros; simplify_option_equality; eauto.
265
Qed.
266

267 268
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
269

270 271 272
Lemma values_head_stuck e1 σ1 e2 σ2 ef :
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
273

274 275
Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.
276

277 278
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
279

280
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
281
Proof.
282 283
  rewrite eq_None_not_Some.
  destruct K as [|[]]; naive_solver eauto using fill_val.
284
Qed.
285

286 287 288
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Proof. destruct 2; simpl; rewrite ?to_of_val; naive_solver. Qed.
289

290 291
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
292
Proof.
293 294 295
  intros Hatomic [K e1' e2' -> -> Hstep].
  assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
296
Qed.
297

298
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
299
  head_step (fill_item Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
300
Proof. destruct Ki; inversion_clear 1; simplify_option_equality; eauto. Qed.
301

302
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
303
  to_val e1 = None  to_val e2 = None 
304
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
305
Proof.
306
  destruct Ki1, Ki2; intros; try discriminate; simplify_equality';
307
    repeat match goal with
308 309
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
310
Qed.
311

312 313 314 315 316 317
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
318
Proof.
319 320 321
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
  destruct K' as [|Ki' K']; simplify_equality'.
Ralf Jung's avatar
Ralf Jung committed
322
  { exfalso; apply (eq_None_not_Some (to_val (fill K e1)));
323 324
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
325
  eauto using fill_item_no_val_inj, values_head_stuck, fill_not_val.
326
Qed.
327

328 329 330
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
331
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.
332

333 334
Lemma subst_empty e v : subst e "" v = e.
Proof. induction e; simpl; repeat case_decide; intuition auto with f_equal. Qed.
335 336 337 338 339 340 341 342 343 344
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
  expr := heap_lang.expr; val := heap_lang.val; state := heap_lang.state;
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
  heap_lang.values_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
345

346
Global Instance heap_lang_ctx K : LanguageCtx heap_lang (heap_lang.fill K).
347
Proof.
348 349
  split.
  * eauto using heap_lang.fill_not_val.
350
  * intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
351
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
352
  * intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
353 354
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
355
    rewrite heap_lang.fill_app in Heq1; apply (inj _) in Heq1.
Ralf Jung's avatar
Ralf Jung committed
356
    exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
357
    econstructor; eauto.
358
Qed.
359 360 361 362 363 364 365

Global Instance heap_lang_ctx_item Ki :
  LanguageCtx heap_lang (heap_lang.fill_item Ki).
Proof.
  change (LanguageCtx heap_lang (heap_lang.fill [Ki])).
  by apply _.
Qed.