heap.v 8.44 KB
Newer Older
1
2
From heap_lang Require Export derived.
From program_logic Require Import ownership auth.
Ralf Jung's avatar
Ralf Jung committed
3
From heap_lang Require Import notation.
4
5
6
7
8
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
   a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
   predicates over finmaps instead of just ownP. *)

9
Definition heapRA := mapRA loc (exclRA (leibnizC val)).
10

11
12
13
Class HeapInG Σ (i : gid) := heap_inG :> InG heap_lang Σ i (authRA heapRA).
Instance heap_inG_auth `{HeapInG Σ i} : AuthInG heap_lang Σ i heapRA.
Proof. split; apply _. Qed.
14

15
16
Definition to_heap : state  heapRA := fmap Excl.
Definition from_heap : heapRA  state := omap (maybe Excl).
17

18
19
20
21
22
23
24
25
26
27
28
(* TODO: Do we want to expose heap ownership based on the state, or the heapRA?
   The former does not expose the annoying "Excl", so for now I am going for
   that. We should be able to derive the lemmas we want for this, too. *)
Definition heap_own {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (σ : state) : iPropG heap_lang Σ := auth_own i γ (to_heap σ).
Definition heap_mapsto {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (l : loc) (v : val) : iPropG heap_lang Σ := heap_own i γ {[ l  v ]}.
Definition heap_inv {Σ} (i : gid) `{HeapInG Σ i}
  (h : heapRA) : iPropG heap_lang Σ := ownP (from_heap h).
Definition heap_ctx {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (N : namespace) : iPropG heap_lang Σ := auth_ctx i γ N (heap_inv i).
29

30
31
32
33
34
35
36
Section heap.
  Context {Σ : iFunctorG} (HeapI : gid) `{!HeapInG Σ HeapI}.
  Implicit Types N : namespace.
  Implicit Types P : iPropG heap_lang Σ.
  Implicit Types σ : state.
  Implicit Types h g : heapRA.
  Implicit Types γ : gname.
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
  Lemma from_to_heap σ : from_heap (to_heap σ) = σ.
39
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
42
43
44
45
46
    apply map_eq=>l. rewrite lookup_omap lookup_fmap. by case (σ !! l).
  Qed.
  Lemma to_heap_valid σ :  to_heap σ.
  Proof. intros n l. rewrite lookup_fmap. by case (σ !! l). Qed.
  Hint Resolve to_heap_valid.

  Global Instance heap_inv_proper : Proper (() ==> ()) (heap_inv HeapI).
47
  Proof. intros h1 h2. by fold_leibniz=> ->. Qed.
48
49

  Lemma heap_own_op γ σ1 σ2 :
50
51
    (heap_own HeapI γ σ1  heap_own HeapI γ σ2)%I
     ( (σ1 ⊥ₘ σ2)  heap_own HeapI γ (σ1  σ2))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
  Proof.
 (* TODO. *)
54
55
56
57
  Abort.

  Lemma heap_own_mapsto γ σ l v :
    (* TODO: Is this the best way to express "l ∉ dom σ"? *)
58
59
    (heap_own HeapI γ σ  heap_mapsto HeapI γ l v)%I
     ( (σ !! l = None)  heap_own HeapI γ (<[l:=v]>σ))%I.
60
61
62
  Proof. (* TODO. *)
  Abort.

63
  (* TODO: Do we want equivalence to a big sum? *)
64

65
66
  Lemma heap_alloc N σ :
    ownP σ  pvs N N ( γ, heap_ctx HeapI γ N  heap_own HeapI γ σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
67
  Proof. by rewrite -{1}[σ]from_to_heap -(auth_alloc _ N). Qed.
68

Ralf Jung's avatar
Ralf Jung committed
69
70
71
72
73
74
75
76
77
78
79
  Lemma wp_alloc_heap N E γ σ e v P Q :
    nclose N  E   to_val e = Some v 
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ 
          ( l, σ !! l = None  heap_own HeapI γ (<[l:=v]>σ) - Q (LocV l))) 
    P  wp E (Alloc e) Q.
  Proof.
    rewrite /heap_ctx /heap_own. intros HN Hval Hl Hctx HP.
    Fail eapply (auth_fsa (heap_inv HeapI) (wp_fsa _ _) (alter (λ _, Excl v) l)).
  Abort.

80
  Lemma wp_load_heap N E γ σ l v P Q :
81
    σ !! l = Some v 
Ralf Jung's avatar
Ralf Jung committed
82
    nclose N  E 
83
84
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ σ - Q v)) 
85
86
    P  wp E (Load (Loc l)) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
87
    rewrite /heap_ctx /heap_own. intros Hl HN Hctx HP.
88
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) id); simpl; eauto.
89
90
91
92
93
94
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_load_pst; first (apply sep_mono; first done); last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
Ralf Jung's avatar
Ralf Jung committed
95
      case _:(hf !! l)=>[[?||]|]; by auto. }
96
97
98
99
    apply later_mono, wand_intro_l. rewrite left_id const_equiv // left_id.
    by rewrite -later_intro.
  Qed.

100
  Lemma wp_load N E γ l v P Q :
Ralf Jung's avatar
Ralf Jung committed
101
    nclose N  E 
102
103
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v   (heap_mapsto HeapI γ l v - Q v)) 
Ralf Jung's avatar
Ralf Jung committed
104
105
    P  wp E (Load (Loc l)) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
106
    intros HN. rewrite /heap_mapsto. apply wp_load_heap; last done.
Ralf Jung's avatar
Ralf Jung committed
107
108
    by simplify_map_equality.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
109

Ralf Jung's avatar
Ralf Jung committed
110
111
112
  Lemma wp_store_heap N E γ σ l v' e v P Q :
    σ !! l = Some v'  to_val e = Some v  
    nclose N  E 
Ralf Jung's avatar
Ralf Jung committed
113
114
115
116
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ (<[l:=v]>σ) - Q (LitV LitUnit))) 
    P  wp E (Store (Loc l) e) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
117
    rewrite /heap_ctx /heap_own. intros Hl Hval HN Hctx HP.
118
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (alter (λ _, Excl v) l)); simpl; eauto.
Ralf Jung's avatar
Ralf Jung committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_store_pst; first (apply sep_mono; first done); try eassumption; last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
      case _:(hf !! l)=>[[?||]|]; by auto. }
    apply later_mono, wand_intro_l. rewrite const_equiv //; last first.
    (* TODO I think there are some general fin_map lemmas hiding in here. *)
    { split.
      - exists (Excl v'). by rewrite lookup_fmap Hl.
      - move=>n l'. move: (Hv n l'). rewrite !lookup_op.
        destruct (decide (l=l')); simplify_map_equality.
        + rewrite lookup_alter lookup_fmap Hl /=. case (hf !! l')=>[[?||]|]; by auto.
        + rewrite lookup_alter_ne //. }
    rewrite left_id -later_intro.
    assert (alter (λ _ : excl val, Excl v) l (to_heap σ) = to_heap (<[l:=v]> σ)) as EQ.
    { apply: map_eq=>l'. destruct (decide (l=l')); simplify_map_equality.
      + by rewrite lookup_alter /to_heap !lookup_fmap lookup_insert Hl /=.
      + rewrite lookup_alter_ne // !lookup_fmap lookup_insert_ne //. }
    rewrite !EQ. apply sep_mono; last done.
    f_equiv. apply: map_eq=>l'. move: (Hv 0%nat l'). destruct (decide (l=l')); simplify_map_equality.
    - rewrite /from_heap /to_heap lookup_insert lookup_omap !lookup_op.
      rewrite !lookup_fmap lookup_insert Hl.
      case (hf !! l')=>[[?||]|]; auto; contradiction.
    - rewrite /from_heap /to_heap lookup_insert_ne // !lookup_omap !lookup_op !lookup_fmap.
      rewrite lookup_insert_ne //.
  Qed.

Ralf Jung's avatar
Ralf Jung committed
148
149
150
  Lemma wp_store N E γ l v' e v P Q :
    to_val e = Some v  
    nclose N  E  
Ralf Jung's avatar
Ralf Jung committed
151
152
153
154
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v'   (heap_mapsto HeapI γ l v - Q (LitV LitUnit))) 
    P  wp E (Store (Loc l) e) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
155
    rewrite /heap_mapsto=>Hval HN Hctx HP. eapply wp_store_heap; try eassumption; last first.
Ralf Jung's avatar
Ralf Jung committed
156
157
158
    - rewrite HP. apply sep_mono; first done. by rewrite insert_singleton.
    - by rewrite lookup_insert.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

  Lemma wp_cas_fail_heap N E γ σ l v' e1 v1 e2 v2 P Q :
    to_val e1 = Some v1  to_val e2 = Some v2  σ !! l = Some v'  v'  v1 
    nclose N  E 
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ σ - Q 'false)) 
    P  wp E (Cas (Loc l) e1 e2) Q.
  Proof.
    rewrite /heap_ctx /heap_own. intros He1 He2 Hl Hne HN Hctx HP.
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) id); simpl; eauto.
    { split_ands; eexists; eauto. }
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_cas_fail_pst; first (apply sep_mono; first done); try eassumption; last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
      case _:(hf !! l)=>[[?||]|]; by auto. }
    apply later_mono, wand_intro_l. rewrite left_id const_equiv // left_id.
    by rewrite -later_intro.
  Qed.

  Lemma wp_cas_fail N E γ l v' e1 v1 e2 v2 P Q :
    to_val e1 = Some v1  to_val e2 = Some v2  v'  v1 
    nclose N  E 
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v'   (heap_mapsto HeapI γ l v' - Q 'false)) 
    P  wp E (Cas (Loc l) e1 e2) Q.
  Proof.
    rewrite /heap_mapsto=>???. eapply wp_cas_fail_heap; try eassumption.
    by simplify_map_equality.
  Qed.
191
End heap.