fin_maps.v 13.7 KB
Newer Older
1
Require Export algebra.cmra prelude.gmap algebra.option.
Ralf Jung's avatar
Ralf Jung committed
2
Require Import algebra.functor.
3

4 5
Section cofe.
Context `{Countable K} {A : cofeT}.
6
Implicit Types m : gmap K A.
7

8
Instance map_dist : Dist (gmap K A) := λ n m1 m2,
9
   i, m1 !! i {n} m2 !! i.
10
Program Definition map_chain (c : chain (gmap K A))
11
  (k : K) : chain (option A) := {| chain_car n := c n !! k |}.
12 13
Next Obligation. by intros c k n i ?; apply (chain_cauchy c). Qed.
Instance map_compl : Compl (gmap K A) := λ c,
14
  map_imap (λ i _, compl (map_chain c i)) (c 1).
15
Definition map_cofe_mixin : CofeMixin (gmap K A).
16 17 18 19 20 21 22 23 24 25
Proof.
  split.
  * intros m1 m2; split.
    + by intros Hm n k; apply equiv_dist.
    + intros Hm k; apply equiv_dist; intros n; apply Hm.
  * intros n; split.
    + by intros m k.
    + by intros m1 m2 ? k.
    + by intros m1 m2 m3 ?? k; transitivity (m2 !! k).
  * by intros n m1 m2 ? k; apply dist_S.
26 27 28
  * intros c n k; rewrite /compl /map_compl lookup_imap.
    feed inversion (λ H, chain_cauchy c 0 (S n) H k); simpl; auto with lia.
    by rewrite conv_compl /=; apply reflexive_eq.
29
Qed.
30 31 32
Canonical Structure mapC : cofeT := CofeT map_cofe_mixin.

Global Instance lookup_ne n k :
33
  Proper (dist n ==> dist n) (lookup k : gmap K A  option A).
34
Proof. by intros m1 m2. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36
Global Instance lookup_proper k :
  Proper (() ==> ()) (lookup k : gmap K A  option A) := _.
37 38 39 40 41 42
Global Instance alter_ne f k n :
  Proper (dist n ==> dist n) f  Proper (dist n ==> dist n) (alter f k).
Proof.
  intros ? m m' Hm k'.
  by destruct (decide (k = k')); simplify_map_equality; rewrite (Hm k').
Qed.
43
Global Instance insert_ne i n :
44
  Proper (dist n ==> dist n ==> dist n) (insert (M:=gmap K A) i).
45 46 47 48
Proof.
  intros x y ? m m' ? j; destruct (decide (i = j)); simplify_map_equality;
    [by constructor|by apply lookup_ne].
Qed.
49
Global Instance singleton_ne i n :
50 51
  Proper (dist n ==> dist n) (singletonM i : A  gmap K A).
Proof. by intros ???; apply insert_ne. Qed.
52
Global Instance delete_ne i n :
53
  Proper (dist n ==> dist n) (delete (M:=gmap K A) i).
54 55 56 57
Proof.
  intros m m' ? j; destruct (decide (i = j)); simplify_map_equality;
    [by constructor|by apply lookup_ne].
Qed.
58

59
Instance map_empty_timeless : Timeless ( : gmap K A).
60 61 62 63
Proof.
  intros m Hm i; specialize (Hm i); rewrite lookup_empty in Hm |- *.
  inversion_clear Hm; constructor.
Qed.
64
Global Instance map_lookup_timeless m i : Timeless m  Timeless (m !! i).
65 66
Proof.
  intros ? [x|] Hx; [|by symmetry; apply (timeless _)].
67
  assert (m {0} <[i:=x]> m)
Robbert Krebbers's avatar
Robbert Krebbers committed
68 69
    by (by symmetry in Hx; inversion Hx; cofe_subst; rewrite insert_id).
  by rewrite (timeless m (<[i:=x]>m)) // lookup_insert.
70
Qed.
71
Global Instance map_insert_timeless m i x :
72 73 74
  Timeless x  Timeless m  Timeless (<[i:=x]>m).
Proof.
  intros ?? m' Hm j; destruct (decide (i = j)); simplify_map_equality.
Robbert Krebbers's avatar
Robbert Krebbers committed
75 76
  { by apply (timeless _); rewrite -Hm lookup_insert. }
  by apply (timeless _); rewrite -Hm lookup_insert_ne.
77
Qed.
78
Global Instance map_singleton_timeless i x :
79
  Timeless x  Timeless ({[ i  x ]} : gmap K A) := _.
80
End cofe.
81

82
Arguments mapC _ {_ _} _.
83 84

(* CMRA *)
85 86 87 88 89
Section cmra.
Context `{Countable K} {A : cmraT}.

Instance map_op : Op (gmap K A) := merge op.
Instance map_unit : Unit (gmap K A) := fmap unit.
90
Instance map_validN : ValidN (gmap K A) := λ n m,  i, {n} (m !! i).
91
Instance map_minus : Minus (gmap K A) := merge minus.
92

93
Lemma lookup_op m1 m2 i : (m1  m2) !! i = m1 !! i  m2 !! i.
94
Proof. by apply lookup_merge. Qed.
95
Lemma lookup_minus m1 m2 i : (m1  m2) !! i = m1 !! i  m2 !! i.
96
Proof. by apply lookup_merge. Qed.
97
Lemma lookup_unit m i : unit m !! i = unit (m !! i).
98
Proof. by apply lookup_fmap. Qed.
99

100
Lemma map_included_spec (m1 m2 : gmap K A) : m1  m2   i, m1 !! i  m2 !! i.
101 102
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
  * by intros [m Hm]; intros i; exists (m !! i); rewrite -lookup_op Hm.
104
  * intros Hm; exists (m2  m1); intros i.
105
    by rewrite lookup_op lookup_minus cmra_op_minus'.
106
Qed.
107
Lemma map_includedN_spec (m1 m2 : gmap K A) n :
108 109 110
  m1 {n} m2   i, m1 !! i {n} m2 !! i.
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
  * by intros [m Hm]; intros i; exists (m !! i); rewrite -lookup_op Hm.
112
  * intros Hm; exists (m2  m1); intros i.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
    by rewrite lookup_op lookup_minus cmra_op_minus.
114
Qed.
115

116
Definition map_cmra_mixin : CMRAMixin (gmap K A).
117 118
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
119 120 121 122
  * by intros n m1 m2 m3 Hm i; rewrite !lookup_op (Hm i).
  * by intros n m1 m2 Hm i; rewrite !lookup_unit (Hm i).
  * by intros n m1 m2 Hm ? i; rewrite -(Hm i).
  * by intros n m1 m1' Hm1 m2 m2' Hm2 i; rewrite !lookup_minus (Hm1 i) (Hm2 i).
123
  * intros n m Hm i; apply cmra_validN_S, Hm.
124 125
  * by intros m1 m2 m3 i; rewrite !lookup_op assoc.
  * by intros m1 m2 i; rewrite !lookup_op comm.
126
  * by intros m i; rewrite lookup_op !lookup_unit cmra_unit_l.
127
  * by intros m i; rewrite !lookup_unit cmra_unit_idemp.
128
  * intros n x y; rewrite !map_includedN_spec; intros Hm i.
129 130
    by rewrite !lookup_unit; apply cmra_unit_preservingN.
  * intros n m1 m2 Hm i; apply cmra_validN_op_l with (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
131
    by rewrite -lookup_op.
132
  * intros x y n; rewrite map_includedN_spec=> ? i.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
    by rewrite lookup_op lookup_minus cmra_op_minus.
134
Qed.
135
Definition map_cmra_extend_mixin : CMRAExtendMixin (gmap K A).
136 137
Proof.
  intros n m m1 m2 Hm Hm12.
138
  assert ( i, m !! i {n} m1 !! i  m2 !! i) as Hm12'
Robbert Krebbers's avatar
Robbert Krebbers committed
139
    by (by intros i; rewrite -lookup_op).
140 141 142
  set (f i := cmra_extend_op n (m !! i) (m1 !! i) (m2 !! i) (Hm i) (Hm12' i)).
  set (f_proj i := proj1_sig (f i)).
  exists (map_imap (λ i _, (f_proj i).1) m, map_imap (λ i _, (f_proj i).2) m);
Robbert Krebbers's avatar
Robbert Krebbers committed
143
    repeat split; intros i; rewrite /= ?lookup_op !lookup_imap.
144
  * destruct (m !! i) as [x|] eqn:Hx; rewrite !Hx /=; [|constructor].
Robbert Krebbers's avatar
Robbert Krebbers committed
145
    rewrite -Hx; apply (proj2_sig (f i)).
146
  * destruct (m !! i) as [x|] eqn:Hx; rewrite /=; [apply (proj2_sig (f i))|].
147
    pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
148
    by symmetry; apply option_op_positive_dist_l with (m2 !! i).
149 150
  * destruct (m !! i) as [x|] eqn:Hx; simpl; [apply (proj2_sig (f i))|].
    pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
151
    by symmetry; apply option_op_positive_dist_r with (m1 !! i).
152
Qed.
153 154
Canonical Structure mapRA : cmraT :=
  CMRAT map_cofe_mixin map_cmra_mixin map_cmra_extend_mixin.
155 156 157 158 159 160 161
Global Instance map_cmra_identity : CMRAIdentity mapRA.
Proof.
  split.
  * by intros ? n; rewrite lookup_empty.
  * by intros m i; rewrite /= lookup_op lookup_empty (left_id_L None _).
  * apply map_empty_timeless.
Qed.
162
End cmra.
163

164 165 166
Arguments mapRA _ {_ _} _.

Section properties.
167
Context `{Countable K} {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
Implicit Types m : gmap K A.
169 170
Implicit Types i : K.
Implicit Types a : A.
171

172
Lemma map_lookup_validN n m i x : {n} m  m !! i {n} Some x  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
Proof. by move=> /(_ i) Hm Hi; move:Hm; rewrite Hi. Qed.
174
Lemma map_insert_validN n m i x : {n} x  {n} m  {n} <[i:=x]>m.
175
Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_equality. Qed.
176 177 178 179 180
Lemma map_singleton_validN n i x : {n} ({[ i  x ]} : gmap K A)  {n} x.
Proof.
  split; [|by intros; apply map_insert_validN, cmra_empty_valid].
  by move=>/(_ i); simplify_map_equality.
Qed.
181

182
Lemma map_insert_op_None m1 m2 i x :
183
  m2 !! i = None  <[i:=x]>(m1  m2) = <[i:=x]>m1  m2.
184
Proof. by intros Hi; apply (insert_merge_l _ m1 m2); rewrite Hi. Qed.
185 186 187 188 189 190 191 192 193 194 195 196 197 198
Lemma map_insert_op_unit m1 m2 i x :
  m2 !! i  Some (unit x)  <[i:=x]>(m1  m2)  <[i:=x]>m1  m2.
Proof.
  intros Hu j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_insert lookup_op lookup_insert Hu cmra_unit_r.
  * by rewrite lookup_insert_ne // !lookup_op lookup_insert_ne.
Qed.
Lemma map_insert_op m1 m2 i x :
  m2 !! i = None  m2 !! i  Some (unit x) 
  <[i:=x]>(m1  m2)  <[i:=x]>m1  m2.
Proof.
  by intros [?|?]; [rewrite map_insert_op_None|rewrite map_insert_op_unit].
Qed.

199 200 201 202 203 204
Lemma map_unit_singleton (i : K) (x : A) :
  unit ({[ i  x ]} : gmap K A) = {[ i  unit x ]}.
Proof. apply map_fmap_singleton. Qed.
Lemma map_op_singleton (i : K) (x y : A) :
  {[ i  x ]}  {[ i  y ]} = ({[ i  x  y ]} : gmap K A).
Proof. by apply (merge_singleton _ _ _ x y). Qed.
205

Robbert Krebbers's avatar
Robbert Krebbers committed
206
Lemma singleton_includedN n m i x :
207
  {[ i  x ]} {n} m   y, m !! i {n} Some y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
208 209 210 211 212
  (* not m !! i = Some y  x {n} y to deal with n = 0 *)
Proof.
  split.
  * move=> [m' /(_ i)]; rewrite lookup_op lookup_singleton=> Hm.
    destruct (m' !! i) as [y|];
213
      [exists (x  y)|exists x]; eauto using cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
214 215 216 217 218
  * intros (y&Hi&?); rewrite map_includedN_spec=>j.
    destruct (decide (i = j)); simplify_map_equality.
    + by rewrite Hi; apply Some_Some_includedN, cmra_included_includedN.
    + apply None_includedN.
Qed.
219
Lemma map_dom_op m1 m2 : dom (gset K) (m1  m2)  dom _ m1  dom _ m2.
220
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
221
  apply elem_of_equiv; intros i; rewrite elem_of_union !elem_of_dom.
222 223 224
  unfold is_Some; setoid_rewrite lookup_op.
  destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
225

226
Lemma map_insert_updateP (P : A  Prop) (Q : gmap K A  Prop) m i x :
227
  x ~~>: P  ( y, P y  Q (<[i:=y]>m))  <[i:=x]>m ~~>: Q.
228 229 230 231 232 233 234 235
Proof.
  intros Hx%option_updateP' HP mf n Hm.
  destruct (Hx (mf !! i) n) as ([y|]&?&?); try done.
  { by generalize (Hm i); rewrite lookup_op; simplify_map_equality. }
  exists (<[i:=y]> m); split; first by auto.
  intros j; move: (Hm j)=>{Hm}; rewrite !lookup_op=>Hm.
  destruct (decide (i = j)); simplify_map_equality'; auto.
Qed.
236
Lemma map_insert_updateP' (P : A  Prop) m i x :
237
  x ~~>: P  <[i:=x]>m ~~>: λ m',  y, m' = <[i:=y]>m  P y.
238
Proof. eauto using map_insert_updateP. Qed.
239
Lemma map_insert_update m i x y : x ~~> y  <[i:=x]>m ~~> <[i:=y]>m.
240
Proof.
241
  rewrite !cmra_update_updateP; eauto using map_insert_updateP with subst.
242 243
Qed.

244 245 246 247
Lemma map_singleton_updateP (P : A  Prop) (Q : gmap K A  Prop) i x :
  x ~~>: P  ( y, P y  Q {[ i  y ]})  {[ i  x ]} ~~>: Q.
Proof. apply map_insert_updateP. Qed.
Lemma map_singleton_updateP' (P : A  Prop) i x :
248
  x ~~>: P  {[ i  x ]} ~~>: λ m,  y, m = {[ i  y ]}  P y.
249
Proof. apply map_insert_updateP'. Qed.
250
Lemma map_singleton_update i (x y : A) : x ~~> y  {[ i  x ]} ~~> {[ i  y ]}.
251
Proof. apply map_insert_update. Qed.
252

253
Lemma map_singleton_updateP_empty `{Empty A, !CMRAIdentity A}
Robbert Krebbers's avatar
Robbert Krebbers committed
254
    (P : A  Prop) (Q : gmap K A  Prop) i :
255
   ~~>: P  ( y, P y  Q {[ i  y ]})   ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
256 257 258 259 260 261 262 263 264 265 266
Proof.
  intros Hx HQ gf n Hg.
  destruct (Hx (from_option  (gf !! i)) n) as (y&?&Hy).
  { move:(Hg i). rewrite !left_id.
    case _: (gf !! i); simpl; auto using cmra_empty_valid. }
  exists {[ i  y ]}; split; first by auto.
  intros i'; destruct (decide (i' = i)) as [->|].
  - rewrite lookup_op lookup_singleton.
    move:Hy; case _: (gf !! i); first done.
    by rewrite right_id.
  - move:(Hg i'). by rewrite !lookup_op lookup_singleton_ne // !left_id.
267
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
268
Lemma map_singleton_updateP_empty' `{Empty A, !CMRAIdentity A} (P: A  Prop) i :
269 270 271
   ~~>: P   ~~>: λ m,  y, m = {[ i  y ]}  P y.
Proof. eauto using map_singleton_updateP_empty. Qed.

272
Section freshness.
Robbert Krebbers's avatar
Robbert Krebbers committed
273
Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
274
Lemma map_updateP_alloc (Q : gmap K A  Prop) m x :
275
   x  ( i, m !! i = None  Q (<[i:=x]>m))  m ~~>: Q.
276
Proof.
277
  intros ? HQ mf n Hm. set (i := fresh (dom (gset K) (m  mf))).
278
  assert (i  dom (gset K) m  i  dom (gset K) mf) as [??].
Robbert Krebbers's avatar
Robbert Krebbers committed
279
  { rewrite -not_elem_of_union -map_dom_op; apply is_fresh. }
280
  exists (<[i:=x]>m); split; first by apply HQ, not_elem_of_dom.
281
  rewrite -map_insert_op_None; last by apply not_elem_of_dom.
282
  by apply map_insert_validN; [apply cmra_valid_validN|].
283
Qed.
284
Lemma map_updateP_alloc' m x :
285
   x  m ~~>: λ m',  i, m' = <[i:=x]>m  m !! i = None.
286
Proof. eauto using map_updateP_alloc. Qed.
287 288
End freshness.

289 290 291 292 293 294
(* Allocation is a local update: Just use composition with a singleton map. *)
(* Deallocation is *not* a local update. The trouble is that if we
   own {[ i  x ]}, then the frame could always own "unit x", and prevent
   deallocation. *)

(* Applying a local update at a position we own is a local update. *)
295 296
Global Instance map_alter_update `{!LocalUpdate Lv L} i :
  LocalUpdate (λ m,  x, m !! i = Some x  Lv x) (alter L i).
297
Proof.
298 299 300 301
  split; first apply _.
  intros n m1 m2 (x&Hix&?) Hm j; destruct (decide (i = j)) as [->|].
  - rewrite lookup_alter !lookup_op lookup_alter Hix /=.
    move: (Hm j); rewrite lookup_op Hix.
302
    case: (m2 !! j)=>[y|] //=; constructor. by apply (local_updateN L).
303
  - by rewrite lookup_op !lookup_alter_ne // lookup_op.
304
Qed.
305 306
End properties.

307
(** Functor *)
308 309 310 311 312 313 314 315 316 317 318
Instance map_fmap_ne `{Countable K} {A B : cofeT} (f : A  B) n :
  Proper (dist n ==> dist n) f  Proper (dist n ==>dist n) (fmap (M:=gmap K) f).
Proof. by intros ? m m' Hm k; rewrite !lookup_fmap; apply option_fmap_ne. Qed.
Instance map_fmap_cmra_monotone `{Countable K} {A B : cmraT} (f : A  B)
  `{!CMRAMonotone f} : CMRAMonotone (fmap f : gmap K A  gmap K B).
Proof.
  split.
  * intros m1 m2 n; rewrite !map_includedN_spec; intros Hm i.
    by rewrite !lookup_fmap; apply: includedN_preserving.
  * by intros n m ? i; rewrite lookup_fmap; apply validN_preserving.
Qed.
319 320 321 322 323 324 325 326
Definition mapC_map `{Countable K} {A B} (f: A -n> B) : mapC K A -n> mapC K B :=
  CofeMor (fmap f : mapC K A  mapC K B).
Instance mapC_map_ne `{Countable K} {A B} n :
  Proper (dist n ==> dist n) (@mapC_map K _ _ A B).
Proof.
  intros f g Hf m k; rewrite /= !lookup_fmap.
  destruct (_ !! k) eqn:?; simpl; constructor; apply Hf.
Qed.
Ralf Jung's avatar
Ralf Jung committed
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

Program Definition mapF K `{Countable K} (Σ : iFunctor) : iFunctor := {|
  ifunctor_car := mapRA K  Σ; ifunctor_map A B := mapC_map  ifunctor_map Σ
|}.
Next Obligation.
  by intros K ?? Σ A B n f g Hfg; apply mapC_map_ne, ifunctor_map_ne.
Qed.
Next Obligation.
  intros K ?? Σ A x. rewrite /= -{2}(map_fmap_id x).
  apply map_fmap_setoid_ext=> ? y _; apply ifunctor_map_id.
Qed.
Next Obligation.
  intros K ?? Σ A B C f g x. rewrite /= -map_fmap_compose.
  apply map_fmap_setoid_ext=> ? y _; apply ifunctor_map_compose.
Qed.