tactics.v 10.9 KB
Newer Older
1
From iris.heap_lang Require Export lang.
2
Set Default Proof Using "Type".
3
4
Import heap_lang.

Robbert Krebbers's avatar
Robbert Krebbers committed
5
6
7
8
(** We define an alternative representation of expressions in which the
embedding of values and closed expressions is explicit. By reification of
expressions into this type we can implementation substitution, closedness
checking, atomic checking, and conversion into values, by computation. *)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
Module W.
Inductive expr :=
  | Val (v : val)
  | ClosedExpr (e : heap_lang.expr) `{!Closed [] e}
  (* Base lambda calculus *)
  | Var (x : string)
  | Rec (f x : binder) (e : expr)
  | App (e1 e2 : expr)
  (* Base types and their operations *)
  | Lit (l : base_lit)
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : expr) (e2 : expr)
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | CAS (e0 : expr) (e1 : expr) (e2 : expr).

Fixpoint to_expr (e : expr) : heap_lang.expr :=
  match e with
  | Val v => of_val v
  | ClosedExpr e _ => e
  | Var x => heap_lang.Var x
  | Rec f x e => heap_lang.Rec f x (to_expr e)
  | App e1 e2 => heap_lang.App (to_expr e1) (to_expr e2)
  | Lit l => heap_lang.Lit l
  | UnOp op e => heap_lang.UnOp op (to_expr e)
  | BinOp op e1 e2 => heap_lang.BinOp op (to_expr e1) (to_expr e2)
  | If e0 e1 e2 => heap_lang.If (to_expr e0) (to_expr e1) (to_expr e2)
  | Pair e1 e2 => heap_lang.Pair (to_expr e1) (to_expr e2)
  | Fst e => heap_lang.Fst (to_expr e)
  | Snd e => heap_lang.Snd (to_expr e)
  | InjL e => heap_lang.InjL (to_expr e)
  | InjR e => heap_lang.InjR (to_expr e)
  | Case e0 e1 e2 => heap_lang.Case (to_expr e0) (to_expr e1) (to_expr e2)
  | Fork e => heap_lang.Fork (to_expr e)
  | Alloc e => heap_lang.Alloc (to_expr e)
  | Load e => heap_lang.Load (to_expr e)
  | Store e1 e2 => heap_lang.Store (to_expr e1) (to_expr e2)
  | CAS e0 e1 e2 => heap_lang.CAS (to_expr e0) (to_expr e1) (to_expr e2)
  end.

Ltac of_expr e :=
  lazymatch e with
  | heap_lang.Var ?x => constr:(Var x)
  | heap_lang.Rec ?f ?x ?e => let e := of_expr e in constr:(Rec f x e)
  | heap_lang.App ?e1 ?e2 =>
     let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(App e1 e2)
  | heap_lang.Lit ?l => constr:(Lit l)
  | heap_lang.UnOp ?op ?e => let e := of_expr e in constr:(UnOp op e)
  | heap_lang.BinOp ?op ?e1 ?e2 =>
     let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(BinOp op e1 e2)
  | heap_lang.If ?e0 ?e1 ?e2 =>
     let e0 := of_expr e0 in let e1 := of_expr e1 in let e2 := of_expr e2 in
     constr:(If e0 e1 e2)
  | heap_lang.Pair ?e1 ?e2 =>
     let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(Pair e1 e2)
  | heap_lang.Fst ?e => let e := of_expr e in constr:(Fst e)
  | heap_lang.Snd ?e => let e := of_expr e in constr:(Snd e)
  | heap_lang.InjL ?e => let e := of_expr e in constr:(InjL e)
  | heap_lang.InjR ?e => let e := of_expr e in constr:(InjR e)
  | heap_lang.Case ?e0 ?e1 ?e2 =>
     let e0 := of_expr e0 in let e1 := of_expr e1 in let e2 := of_expr e2 in
     constr:(Case e0 e1 e2)
  | heap_lang.Fork ?e => let e := of_expr e in constr:(Fork e)
  | heap_lang.Alloc ?e => let e := of_expr e in constr:(Alloc e)
  | heap_lang.Load ?e => let e := of_expr e in constr:(Load e)
  | heap_lang.Store ?e1 ?e2 =>
     let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(Store e1 e2)
  | heap_lang.CAS ?e0 ?e1 ?e2 =>
     let e0 := of_expr e0 in let e1 := of_expr e1 in let e2 := of_expr e2 in
     constr:(CAS e0 e1 e2)
  | to_expr ?e => e
  | of_val ?v => constr:(Val v)
94
  | _ => match goal with H : Closed [] e |- _ => constr:(@ClosedExpr e H) end
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
  end.

Fixpoint is_closed (X : list string) (e : expr) : bool :=
  match e with
  | Val _ | ClosedExpr _ _ => true
  | Var x => bool_decide (x  X)
  | Rec f x e => is_closed (f :b: x :b: X) e
  | Lit _ => true
  | UnOp _ e | Fst e | Snd e | InjL e | InjR e | Fork e | Alloc e | Load e =>
     is_closed X e
  | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 =>
     is_closed X e1 && is_closed X e2
  | If e0 e1 e2 | Case e0 e1 e2 | CAS e0 e1 e2 =>
     is_closed X e0 && is_closed X e1 && is_closed X e2
  end.
Lemma is_closed_correct X e : is_closed X e  heap_lang.is_closed X (to_expr e).
Proof.
  revert X.
  induction e; naive_solver eauto using is_closed_of_val, is_closed_weaken_nil.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
116
117
118
119
(* We define [to_val (ClosedExpr _)] to be [None] since [ClosedExpr]
constructors are only generated for closed expressions of which we know nothing
about apart from being closed. Notice that the reverse implication of
[to_val_Some] thus does not hold. *)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Fixpoint to_val (e : expr) : option val :=
  match e with
  | Val v => Some v
  | Rec f x e =>
     if decide (is_closed (f :b: x :b: []) e) is left H
     then Some (@RecV f x (to_expr e) (is_closed_correct _ _ H)) else None
  | Lit l => Some (LitV l)
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
  | _ => None
  end.
Lemma to_val_Some e v :
  to_val e = Some v  heap_lang.to_val (to_expr e) = Some v.
Proof.
  revert v. induction e; intros; simplify_option_eq; rewrite ?to_of_val; auto.
  - do 2 f_equal. apply proof_irrel.
  - exfalso. unfold Closed in *; eauto using is_closed_correct.
Qed.
139
140
141
Lemma to_val_is_Some e :
  is_Some (to_val e)  is_Some (heap_lang.to_val (to_expr e)).
Proof. intros [v ?]; exists v; eauto using to_val_Some. Qed.
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

Fixpoint subst (x : string) (es : expr) (e : expr)  : expr :=
  match e with
  | Val v => Val v
  | ClosedExpr e H => @ClosedExpr e H
  | Var y => if decide (x = y) then es else Var y
  | Rec f y e =>
     Rec f y $ if decide (BNamed x  f  BNamed x  y) then subst x es e else e
  | App e1 e2 => App (subst x es e1) (subst x es e2)
  | Lit l => Lit l
  | UnOp op e => UnOp op (subst x es e)
  | BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2)
  | If e0 e1 e2 => If (subst x es e0) (subst x es e1) (subst x es e2)
  | Pair e1 e2 => Pair (subst x es e1) (subst x es e2)
  | Fst e => Fst (subst x es e)
  | Snd e => Snd (subst x es e)
  | InjL e => InjL (subst x es e)
  | InjR e => InjR (subst x es e)
  | Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2)
  | Fork e => Fork (subst x es e)
  | Alloc e => Alloc (subst x es e)
  | Load e => Load (subst x es e)
  | Store e1 e2 => Store (subst x es e1) (subst x es e2)
  | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2)
  end.
Lemma to_expr_subst x er e :
  to_expr (subst x er e) = heap_lang.subst x (to_expr er) (to_expr e).
Proof.
  induction e; simpl; repeat case_decide;
171
    f_equal; auto using subst_is_closed_nil, is_closed_of_val, eq_sym.
172
Qed.
173
174
175
176
177
178
179
180

Definition atomic (e : expr) :=
  match e with
  | Alloc e => bool_decide (is_Some (to_val e))
  | Load e => bool_decide (is_Some (to_val e))
  | Store e1 e2 => bool_decide (is_Some (to_val e1)  is_Some (to_val e2))
  | CAS e0 e1 e2 =>
     bool_decide (is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2))
Ralf Jung's avatar
Ralf Jung committed
181
  | Fork _ => true
182
183
184
185
  (* Make "skip" atomic *)
  | App (Rec _ _ (Lit _)) (Lit _) => true
  | _ => false
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
186
Lemma atomic_correct e : atomic e  language.atomic (to_expr e).
187
Proof.
188
  intros He. apply ectx_language_atomic.
189
190
191
192
193
  - intros σ e' σ' ef Hstep; simpl in *.
    apply language.val_irreducible; revert Hstep.
    destruct e=> //=; repeat (simplify_eq/=; case_match=>//);
      inversion 1; simplify_eq/=; rewrite ?to_of_val; eauto.
    unfold subst'; repeat (simplify_eq/=; case_match=>//); eauto.
194
  - apply ectxi_language_sub_values=> /= Ki e' Hfill.
195
196
    destruct e=> //; destruct Ki; repeat (simplify_eq/=; case_match=>//);
      naive_solver eauto using to_val_is_Some.
197
Qed.
198
199
200
201
202
203
204
205
206
207
208
209
End W.

Ltac solve_closed :=
  match goal with
  | |- Closed ?X ?e =>
     let e' := W.of_expr e in change (Closed X (W.to_expr e'));
     apply W.is_closed_correct; vm_compute; exact I
  end.
Hint Extern 0 (Closed _ _) => solve_closed : typeclass_instances.

Ltac solve_to_val :=
  try match goal with
210
211
  | |- context E [language.to_val ?e] =>
     let X := context E [to_val e] in change X
212
213
214
215
  end;
  match goal with
  | |- to_val ?e = Some ?v =>
     let e' := W.of_expr e in change (to_val (W.to_expr e') = Some v);
Robbert Krebbers's avatar
Robbert Krebbers committed
216
     apply W.to_val_Some; simpl; unfold W.to_expr; reflexivity
217
218
219
  | |- is_Some (to_val ?e) =>
     let e' := W.of_expr e in change (is_Some (to_val (W.to_expr e')));
     apply W.to_val_is_Some, (bool_decide_unpack _); vm_compute; exact I
220
221
  end.

222
223
Ltac solve_atomic :=
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
224
225
  | |- language.atomic ?e =>
     let e' := W.of_expr e in change (language.atomic (W.to_expr e'));
226
227
     apply W.atomic_correct; vm_compute; exact I
  end.
228
Hint Extern 10 (language.atomic _) => solve_atomic.
229
(* For the side-condition of elim_upd_fupd_wp_atomic *)
230
Hint Extern 10 (language.atomic _) => solve_atomic : typeclass_instances.
231

232
233
(** Substitution *)
Ltac simpl_subst :=
Robbert Krebbers's avatar
Robbert Krebbers committed
234
  simpl;
235
236
237
238
239
240
241
242
243
244
  repeat match goal with
  | |- context [subst ?x ?er ?e] =>
      let er' := W.of_expr er in let e' := W.of_expr e in
      change (subst x er e) with (subst x (W.to_expr er') (W.to_expr e'));
      rewrite <-(W.to_expr_subst x); simpl (* ssr rewrite is slower *)
  end;
  unfold W.to_expr.
Arguments W.to_expr : simpl never.
Arguments subst : simpl never.

245
246
247
(** The tactic [reshape_expr e tac] decomposes the expression [e] into an
evaluation context [K] and a subexpression [e']. It calls the tactic [tac K e']
for each possible decomposition until [tac] succeeds. *)
248
249
Ltac reshape_val e tac :=
  let rec go e :=
250
  lazymatch e with
251
252
253
254
  | of_val ?v => v
  | Rec ?f ?x ?e => constr:(RecV f x e)
  | Lit ?l => constr:(LitV l)
  | Pair ?e1 ?e2 =>
255
256
257
    let v1 := go e1 in let v2 := go e2 in constr:(PairV v1 v2)
  | InjL ?e => let v := go e in constr:(InjLV v)
  | InjR ?e => let v := go e in constr:(InjRV v)
258
  end in let v := go e in tac v.
259

260
261
262
Ltac reshape_expr e tac :=
  let rec go K e :=
  match e with
263
  | _ => tac K e
264
265
266
  | App ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (AppRCtx v1 :: K) e2)
  | App ?e1 ?e2 => go (AppLCtx e2 :: K) e1
  | UnOp ?op ?e => go (UnOpCtx op :: K) e
267
  | BinOp ?op ?e1 ?e2 =>
268
269
     reshape_val e1 ltac:(fun v1 => go (BinOpRCtx op v1 :: K) e2)
  | BinOp ?op ?e1 ?e2 => go (BinOpLCtx op e2 :: K) e1
270
  | If ?e0 ?e1 ?e2 => go (IfCtx e1 e2 :: K) e0
271
272
  | Pair ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (PairRCtx v1 :: K) e2)
  | Pair ?e1 ?e2 => go (PairLCtx e2 :: K) e1
273
274
275
276
277
278
279
  | Fst ?e => go (FstCtx :: K) e
  | Snd ?e => go (SndCtx :: K) e
  | InjL ?e => go (InjLCtx :: K) e
  | InjR ?e => go (InjRCtx :: K) e
  | Case ?e0 ?e1 ?e2 => go (CaseCtx e1 e2 :: K) e0
  | Alloc ?e => go (AllocCtx :: K) e
  | Load ?e => go (LoadCtx :: K) e
280
281
  | Store ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (StoreRCtx v1 :: K) e2)
  | Store ?e1 ?e2 => go (StoreLCtx e2 :: K) e1
282
  | CAS ?e0 ?e1 ?e2 => reshape_val e0 ltac:(fun v0 => first
283
284
     [ reshape_val e1 ltac:(fun v1 => go (CasRCtx v0 v1 :: K) e2)
     | go (CasMCtx v0 e2 :: K) e1 ])
285
  | CAS ?e0 ?e1 ?e2 => go (CasLCtx e1 e2 :: K) e0
286
  end in go (@nil ectx_item) e.