class_instances.v 29.4 KB
Newer Older
1
From iris.proofmode Require Export classes.
2
From iris.algebra Require Import gmap.
Ralf Jung's avatar
Ralf Jung committed
3
From stdpp Require Import gmultiset.
4
From iris.base_logic Require Import big_op.
5
Set Default Proof Using "Type".
6
7
8
9
10
11
12
Import uPred.

Section classes.
Context {M : ucmraT}.
Implicit Types P Q R : uPred M.

(* FromAssumption *)
13
Global Instance from_assumption_exact p P : FromAssumption p P P | 0.
14
Proof. destruct p; by rewrite /FromAssumption /= ?always_elim. Qed.
15
16
17
Global Instance from_assumption_False p P : FromAssumption p False P | 1.
Proof. destruct p; rewrite /FromAssumption /= ?always_pure; apply False_elim. Qed.

18
19
20
Global Instance from_assumption_always_r P Q :
  FromAssumption true P Q  FromAssumption true P ( Q).
Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed.
21
22
23
24

Global Instance from_assumption_always_l p P Q :
  FromAssumption p P Q  FromAssumption p ( P) Q.
Proof. rewrite /FromAssumption=><-. by rewrite always_elim. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
26
27
28
29
30
Global Instance from_assumption_later p P Q :
  FromAssumption p P Q  FromAssumption p P ( Q)%I.
Proof. rewrite /FromAssumption=>->. apply later_intro. Qed.
Global Instance from_assumption_laterN n p P Q :
  FromAssumption p P Q  FromAssumption p P (^n Q)%I.
Proof. rewrite /FromAssumption=>->. apply laterN_intro. Qed.
31
Global Instance from_assumption_bupd p P Q :
32
  FromAssumption p P Q  FromAssumption p P (|==> Q)%I.
33
Proof. rewrite /FromAssumption=>->. apply bupd_intro. Qed.
34
35
36
Global Instance from_assumption_forall {A} p (Φ : A  uPred M) Q x :
  FromAssumption p (Φ x) Q  FromAssumption p ( x, Φ x) Q.
Proof. rewrite /FromAssumption=> <-. by rewrite forall_elim. Qed.
37
38

(* IntoPure *)
Ralf Jung's avatar
Ralf Jung committed
39
Global Instance into_pure_pure φ : @IntoPure M ⌜φ⌝ φ.
40
Proof. done. Qed.
41
Global Instance into_pure_eq {A : ofeT} (a b : A) :
42
43
  Timeless a  @IntoPure M (a  b) (a  b).
Proof. intros. by rewrite /IntoPure timeless_eq. Qed.
44
45
Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) :
  @IntoPure M ( a) ( a).
46
47
Proof. by rewrite /IntoPure discrete_valid. Qed.

Ralf Jung's avatar
Ralf Jung committed
48
Global Instance into_pure_pure_and (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
49
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
50
Proof. rewrite /IntoPure pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
51
Global Instance into_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
52
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
53
Proof. rewrite /IntoPure sep_and pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
54
Global Instance into_pure_pure_or (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
55
  IntoPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
56
Proof. rewrite /IntoPure pure_or. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
57
Global Instance into_pure_pure_impl (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
58
  FromPure P1 φ1  IntoPure P2 φ2  IntoPure (P1  P2) (φ1  φ2).
59
Proof. rewrite /FromPure /IntoPure pure_impl. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
60
Global Instance into_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
61
  FromPure P1 φ1  IntoPure P2 φ2  IntoPure (P1 - P2) (φ1  φ2).
62
63
64
65
Proof.
  rewrite /FromPure /IntoPure pure_impl always_impl_wand. by intros -> ->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
66
Global Instance into_pure_exist {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
67
68
69
70
71
72
  ( x, @IntoPure M (Φ x) (φ x))  @IntoPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /IntoPure=>Hx. apply exist_elim=>x. rewrite Hx.
  apply pure_elim'=>Hφ. apply pure_intro. eauto.
Qed.

Ralf Jung's avatar
Ralf Jung committed
73
Global Instance into_pure_forall {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
74
75
76
77
78
  ( x, @IntoPure M (Φ x) (φ x))  @IntoPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /IntoPure=>Hx. rewrite -pure_forall_2. by setoid_rewrite Hx.
Qed.

79
(* FromPure *)
Ralf Jung's avatar
Ralf Jung committed
80
Global Instance from_pure_pure φ : @FromPure M ⌜φ⌝ φ.
81
Proof. done. Qed.
82
Global Instance from_pure_internal_eq {A : ofeT} (a b : A) :
83
84
85
86
  @FromPure M (a  b) (a  b).
Proof.
  rewrite /FromPure. eapply pure_elim; [done|]=> ->. apply internal_eq_refl'.
Qed.
87
88
Global Instance from_pure_cmra_valid {A : cmraT} (a : A) :
  @FromPure M ( a) ( a).
89
90
Proof.
  rewrite /FromPure. eapply pure_elim; [done|]=> ?.
91
  rewrite -cmra_valid_intro //. auto with I.
92
Qed.
93
Global Instance from_pure_bupd P φ : FromPure P φ  FromPure (|==> P) φ.
94
Proof. rewrite /FromPure=> ->. apply bupd_intro. Qed.
95

Ralf Jung's avatar
Ralf Jung committed
96
Global Instance from_pure_pure_and (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
97
  FromPure P1 φ1 -> FromPure P2 φ2 -> FromPure (P1  P2) (φ1  φ2).
98
Proof. rewrite /FromPure pure_and. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
99
100
Global Instance from_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
  FromPure P1 φ1 -> FromPure P2 φ2 -> FromPure (P1  P2) (φ1  φ2).
101
Proof. rewrite /FromPure pure_and always_and_sep_l. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
102
Global Instance from_pure_pure_or (φ1 φ2 : Prop) P1 P2 :
Ralf Jung's avatar
Ralf Jung committed
103
  FromPure P1 φ1 -> FromPure P2 φ2 -> FromPure (P1  P2) (φ1  φ2).
104
Proof. rewrite /FromPure pure_or. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
105
106
Global Instance from_pure_pure_impl (φ1 φ2 : Prop) P1 P2 :
  IntoPure P1 φ1 -> FromPure P2 φ2 -> FromPure (P1  P2) (φ1  φ2).
107
Proof. rewrite /FromPure /IntoPure pure_impl. by intros -> ->. Qed.
Ralf Jung's avatar
Ralf Jung committed
108
109
Global Instance from_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
  IntoPure P1 φ1 -> FromPure P2 φ2 -> FromPure (P1 - P2) (φ1  φ2).
110
111
112
113
Proof.
  rewrite /FromPure /IntoPure pure_impl always_impl_wand. by intros -> ->.
Qed.

Ralf Jung's avatar
Ralf Jung committed
114
Global Instance from_pure_exist {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
115
116
117
118
119
  ( x, @FromPure M (Φ x) (φ x))  @FromPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /FromPure=>Hx. apply pure_elim'=>-[x ?]. rewrite -(exist_intro x).
  rewrite -Hx. apply pure_intro. done.
Qed.
Ralf Jung's avatar
Ralf Jung committed
120
Global Instance from_pure_forall {X : Type} (Φ : X  uPred M) (φ : X  Prop) :
121
122
123
124
125
126
  ( x, @FromPure M (Φ x) (φ x))  @FromPure M ( x, Φ x) ( x, φ x).
Proof.
  rewrite /FromPure=>Hx. apply forall_intro=>x. apply pure_elim'=>Hφ.
  rewrite -Hx. apply pure_intro. done.
Qed.

127
128
129
130
131
132
133
134
135
136
137
(* IntoPersistentP *)
Global Instance into_persistentP_always_trans P Q :
  IntoPersistentP P Q  IntoPersistentP ( P) Q | 0.
Proof. rewrite /IntoPersistentP=> ->. by rewrite always_always. Qed.
Global Instance into_persistentP_always P : IntoPersistentP ( P) P | 1.
Proof. done. Qed.
Global Instance into_persistentP_persistent P :
  PersistentP P  IntoPersistentP P P | 100.
Proof. done. Qed.

(* IntoLater *)
138
Global Instance into_laterN_later n P Q :
139
140
141
  IntoLaterN n P Q  IntoLaterN' (S n) ( P) Q.
Proof. by rewrite /IntoLaterN' /IntoLaterN =>->. Qed.
Global Instance into_laterN_laterN n P : IntoLaterN' n (^n P) P.
142
Proof. done. Qed.
143
Global Instance into_laterN_laterN_plus n m P Q :
144
145
  IntoLaterN m P Q  IntoLaterN' (n + m) (^n P) Q.
Proof. rewrite /IntoLaterN' /IntoLaterN=>->. by rewrite laterN_plus. Qed.
146

147
Global Instance into_laterN_and_l n P1 P2 Q1 Q2 :
148
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
149
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
150
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_and. Qed.
151
Global Instance into_laterN_and_r n P P2 Q2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
152
  IntoLaterN' n P2 Q2  IntoLaterN' n (P  P2) (P  Q2) | 11.
153
Proof.
154
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_and -(laterN_intro _ P).
Robbert Krebbers's avatar
Robbert Krebbers committed
155
Qed.
156
157

Global Instance into_laterN_or_l n P1 P2 Q1 Q2 :
158
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
159
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
160
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_or. Qed.
161
Global Instance into_laterN_or_r n P P2 Q2 :
162
  IntoLaterN' n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
163
  IntoLaterN' n (P  P2) (P  Q2) | 11.
164
Proof.
165
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_or -(laterN_intro _ P).
166
167
168
Qed.

Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 :
169
  IntoLaterN' n P1 Q1  IntoLaterN n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
170
171
  IntoLaterN' n (P1  P2) (Q1  Q2) | 10.
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_sep. Qed.
172
Global Instance into_laterN_sep_r n P P2 Q2 :
173
  IntoLaterN' n P2 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
174
  IntoLaterN' n (P  P2) (P  Q2) | 11.
175
Proof.
176
  rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_sep -(laterN_intro _ P).
177
Qed.
178
179

Global Instance into_laterN_big_sepL n {A} (Φ Ψ : nat  A  uPred M) (l: list A) :
180
181
  ( x k, IntoLaterN' n (Φ k x) (Ψ k x)) 
  IntoLaterN' n ([ list] k  x  l, Φ k x) ([ list] k  x  l, Ψ k x).
182
Proof.
183
184
  rewrite /IntoLaterN' /IntoLaterN=> ?.
  rewrite big_sepL_laterN. by apply big_sepL_mono.
185
186
Qed.
Global Instance into_laterN_big_sepM n `{Countable K} {A}
187
    (Φ Ψ : K  A  uPred M) (m : gmap K A) :
188
189
  ( x k, IntoLaterN' n (Φ k x) (Ψ k x)) 
  IntoLaterN' n ([ map] k  x  m, Φ k x) ([ map] k  x  m, Ψ k x).
190
Proof.
191
192
  rewrite /IntoLaterN' /IntoLaterN=> ?.
  rewrite big_sepM_laterN; by apply big_sepM_mono.
193
Qed.
194
Global Instance into_laterN_big_sepS n `{Countable A}
195
    (Φ Ψ : A  uPred M) (X : gset A) :
196
197
  ( x, IntoLaterN' n (Φ x) (Ψ x)) 
  IntoLaterN' n ([ set] x  X, Φ x) ([ set] x  X, Ψ x).
198
Proof.
199
200
  rewrite /IntoLaterN' /IntoLaterN=> ?.
  rewrite big_sepS_laterN; by apply big_sepS_mono.
201
202
203
Qed.
Global Instance into_laterN_big_sepMS n `{Countable A}
    (Φ Ψ : A  uPred M) (X : gmultiset A) :
204
205
  ( x, IntoLaterN' n (Φ x) (Ψ x)) 
  IntoLaterN' n ([ mset] x  X, Φ x) ([ mset] x  X, Ψ x).
206
Proof.
207
208
  rewrite /IntoLaterN' /IntoLaterN=> ?.
  rewrite big_sepMS_laterN; by apply big_sepMS_mono.
209
210
211
Qed.

(* FromLater *)
212
Global Instance from_laterN_later P :FromLaterN 1 ( P) P | 0.
213
Proof. done. Qed.
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
Global Instance from_laterN_laterN n P : FromLaterN n (^n P) P | 0.
Proof. done. Qed.

(* The instances below are used when stripping a specific number of laters, or
to balance laters in different branches of ,  and . *)
Global Instance from_laterN_0 P : FromLaterN 0 P P | 100. (* fallthrough *)
Proof. done. Qed.
Global Instance from_laterN_later_S n P Q :
  FromLaterN n P Q  FromLaterN (S n) ( P) Q.
Proof. by rewrite /FromLaterN=><-. Qed.
Global Instance from_laterN_later_plus n m P Q :
  FromLaterN m P Q  FromLaterN (n + m) (^n P) Q.
Proof. rewrite /FromLaterN=><-. by rewrite laterN_plus. Qed.

Global Instance from_later_and n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_and; apply and_mono. Qed.
Global Instance from_later_or n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_or; apply or_mono. Qed.
Global Instance from_later_sep n P1 P2 Q1 Q2 :
  FromLaterN n P1 Q1  FromLaterN n P2 Q2  FromLaterN n (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite laterN_sep; apply sep_mono. Qed.
237

238
239
240
241
242
243
244
245
246
247
248
249
Global Instance from_later_always n P Q :
  FromLaterN n P Q  FromLaterN n ( P) ( Q).
Proof. by rewrite /FromLaterN -always_laterN=> ->. Qed.

Global Instance from_later_forall {A} n (Φ Ψ : A  uPred M) :
  ( x, FromLaterN n (Φ x) (Ψ x))  FromLaterN n ( x, Φ x) ( x, Ψ x).
Proof. rewrite /FromLaterN laterN_forall=> ?. by apply forall_mono. Qed.
Global Instance from_later_exist {A} n (Φ Ψ : A  uPred M) :
  Inhabited A  ( x, FromLaterN n (Φ x) (Ψ x)) 
  FromLaterN n ( x, Φ x) ( x, Ψ x).
Proof. intros ?. rewrite /FromLaterN laterN_exist=> ?. by apply exist_mono. Qed.

250
(* IntoWand *)
Robbert Krebbers's avatar
Robbert Krebbers committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
Global Instance wand_weaken_exact P Q : WandWeaken P Q P Q.
Proof. done. Qed.
Global Instance wand_weaken_later P Q P' Q' :
  WandWeaken P Q P' Q'  WandWeaken' P Q ( P') ( Q').
Proof.
  rewrite /WandWeaken' /WandWeaken=> ->. by rewrite -later_wand -later_intro.
Qed.
Global Instance wand_weaken_laterN n P Q P' Q' :
  WandWeaken P Q P' Q'  WandWeaken' P Q (^n P') (^n Q').
Proof.
  rewrite /WandWeaken' /WandWeaken=> ->. by rewrite -laterN_wand -laterN_intro.
Qed.
Global Instance bupd_weaken_laterN P Q P' Q' :
  WandWeaken P Q P' Q'  WandWeaken' P Q (|==> P') (|==> Q').
Proof.
  rewrite /WandWeaken' /WandWeaken=> ->.
  apply wand_intro_l. by rewrite bupd_wand_r.
Qed.

Global Instance into_wand_wand P P' Q Q' :
  WandWeaken P Q P' Q'  IntoWand (P - Q) P' Q'.
Proof. done. Qed.
Global Instance into_wand_impl P P' Q Q' :
  WandWeaken P Q P' Q'  IntoWand (P  Q) P' Q'.
Proof. rewrite /WandWeaken /IntoWand /= => <-. apply impl_wand. Qed.

Global Instance into_wand_iff_l P P' Q Q' :
  WandWeaken P Q P' Q'  IntoWand (P  Q) P' Q'.
Proof. rewrite /WandWeaken /IntoWand=> <-. apply and_elim_l', impl_wand. Qed.
Global Instance into_wand_iff_r P P' Q Q' :
  WandWeaken Q P Q' P'  IntoWand (P  Q) Q' P'.
Proof. rewrite /WandWeaken /IntoWand=> <-. apply and_elim_r', impl_wand. Qed.
283

284
285
286
Global Instance into_wand_forall {A} (Φ : A  uPred M) P Q x :
  IntoWand (Φ x) P Q  IntoWand ( x, Φ x) P Q.
Proof. rewrite /IntoWand=> <-. apply forall_elim. Qed.
287
288
Global Instance into_wand_always R P Q : IntoWand R P Q  IntoWand ( R) P Q.
Proof. rewrite /IntoWand=> ->. apply always_elim. Qed.
289

Robbert Krebbers's avatar
Robbert Krebbers committed
290
291
292
293
294
295
Global Instance into_wand_later R P Q :
  IntoWand R P Q  IntoWand ( R) ( P) ( Q).
Proof. rewrite /IntoWand=> ->. by rewrite -later_wand. Qed.
Global Instance into_wand_laterN n R P Q :
  IntoWand R P Q  IntoWand (^n R) (^n P) (^n Q).
Proof. rewrite /IntoWand=> ->. by rewrite -laterN_wand. Qed.
296
Global Instance into_wand_bupd R P Q :
Robbert Krebbers's avatar
Robbert Krebbers committed
297
  IntoWand R P Q  IntoWand (|==> R) (|==> P) (|==> Q).
298
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
  rewrite /IntoWand=> ->. apply wand_intro_l. by rewrite bupd_sep wand_elim_r.
300
Qed.
301
302
303
304
305

(* FromAnd *)
Global Instance from_and_and P1 P2 : FromAnd (P1  P2) P1 P2.
Proof. done. Qed.
Global Instance from_and_sep_persistent_l P1 P2 :
306
  PersistentP P1  FromAnd (P1  P2) P1 P2 | 9.
307
308
Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed.
Global Instance from_and_sep_persistent_r P1 P2 :
309
  PersistentP P2  FromAnd (P1  P2) P1 P2 | 10.
310
Proof. intros. by rewrite /FromAnd always_and_sep_r. Qed.
311
312
Global Instance from_and_pure φ ψ : @FromAnd M ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromAnd pure_and. Qed.
313
314
315
316
317
318
Global Instance from_and_always P Q1 Q2 :
  FromAnd P Q1 Q2  FromAnd ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. by rewrite always_and. Qed.
Global Instance from_and_later P Q1 Q2 :
  FromAnd P Q1 Q2  FromAnd ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. by rewrite later_and. Qed.
319
320
321
Global Instance from_and_laterN n P Q1 Q2 :
  FromAnd P Q1 Q2  FromAnd (^n P) (^n Q1) (^n Q2).
Proof. rewrite /FromAnd=> <-. by rewrite laterN_and. Qed.
322
323

(* FromSep *)
324
Global Instance from_sep_sep P1 P2 : FromSep (P1  P2) P1 P2 | 100.
325
Proof. done. Qed.
326
327
328
329
Global Instance from_sep_ownM (a b1 b2 : M) :
  FromOp a b1 b2 
  FromSep (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. by rewrite /FromSep -ownM_op from_op. Qed.
330

331
332
Global Instance from_sep_pure φ ψ : @FromSep M ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromSep pure_and sep_and. Qed.
333
334
335
336
337
338
Global Instance from_sep_always P Q1 Q2 :
  FromSep P Q1 Q2  FromSep ( P) ( Q1) ( Q2).
Proof. rewrite /FromSep=> <-. by rewrite always_sep. Qed.
Global Instance from_sep_later P Q1 Q2 :
  FromSep P Q1 Q2  FromSep ( P) ( Q1) ( Q2).
Proof. rewrite /FromSep=> <-. by rewrite later_sep. Qed.
339
340
341
Global Instance from_sep_laterN n P Q1 Q2 :
  FromSep P Q1 Q2  FromSep (^n P) (^n Q1) (^n Q2).
Proof. rewrite /FromSep=> <-. by rewrite laterN_sep. Qed.
342
Global Instance from_sep_bupd P Q1 Q2 :
343
  FromSep P Q1 Q2  FromSep (|==> P) (|==> Q1) (|==> Q2).
344
Proof. rewrite /FromSep=><-. apply bupd_sep. Qed.
345

346
347
348
349
350
351
352
Global Instance from_sep_big_sepL_cons {A} (Φ : nat  A  uPred M) x l :
  FromSep ([ list] k  y  x :: l, Φ k y) (Φ 0 x) ([ list] k  y  l, Φ (S k) y).
Proof. by rewrite /FromSep big_sepL_cons. Qed.
Global Instance from_sep_big_sepL_app {A} (Φ : nat  A  uPred M) l1 l2 :
  FromSep ([ list] k  y  l1 ++ l2, Φ k y)
    ([ list] k  y  l1, Φ k y) ([ list] k  y  l2, Φ (length l1 + k) y).
Proof. by rewrite /FromSep big_sepL_app. Qed.
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
(* FromOp *)
Global Instance from_op_op {A : cmraT} (a b : A) : FromOp (a  b) a b.
Proof. by rewrite /FromOp. Qed.
Global Instance from_op_persistent {A : cmraT} (a : A) :
  Persistent a  FromOp a a a.
Proof. intros. by rewrite /FromOp -(persistent_dup a). Qed.
Global Instance from_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
  FromOp a b1 b2  FromOp a' b1' b2' 
  FromOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
Global Instance from_op_Some {A : cmraT} (a : A) b1 b2 :
  FromOp a b1 b2  FromOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.

368
369
370
371
372
373
374
375
376
377
378
379
380
381
(* IntoOp *)
Global Instance into_op_op {A : cmraT} (a b : A) : IntoOp (a  b) a b.
Proof. by rewrite /IntoOp. Qed.
Global Instance into_op_persistent {A : cmraT} (a : A) :
  Persistent a  IntoOp a a a.
Proof. intros; apply (persistent_dup a). Qed.
Global Instance into_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
  IntoOp a b1 b2  IntoOp a' b1' b2' 
  IntoOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
Global Instance into_op_Some {A : cmraT} (a : A) b1 b2 :
  IntoOp a b1 b2  IntoOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.

382
(* IntoAnd *)
383
Global Instance into_and_sep p P Q : IntoAnd p (P  Q) P Q.
384
385
Proof. by apply mk_into_and_sep. Qed.
Global Instance into_and_ownM p (a b1 b2 : M) :
386
  IntoOp a b1 b2 
387
388
  IntoAnd p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. apply mk_into_and_sep. by rewrite (into_op a) ownM_op. Qed.
389

390
Global Instance into_and_and P Q : IntoAnd true (P  Q) P Q.
391
Proof. done. Qed.
392
393
394
395
396
397
398
Global Instance into_and_and_persistent_l P Q :
  PersistentP P  IntoAnd false (P  Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_l. Qed.
Global Instance into_and_and_persistent_r P Q :
  PersistentP Q  IntoAnd false (P  Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_r. Qed.

399
400
401
402
403
404
405
Global Instance into_and_pure p φ ψ : @IntoAnd M p ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. apply mk_into_and_sep. by rewrite pure_and always_and_sep_r. Qed.
Global Instance into_and_always p P Q1 Q2 :
  IntoAnd true P Q1 Q2  IntoAnd p ( P) ( Q1) ( Q2).
Proof.
  rewrite /IntoAnd=>->. destruct p; by rewrite ?always_and always_and_sep_r.
Qed.
406
407
408
Global Instance into_and_later p P Q1 Q2 :
  IntoAnd p P Q1 Q2  IntoAnd p ( P) ( Q1) ( Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?later_and ?later_sep. Qed.
409
410
411
Global Instance into_and_laterN n p P Q1 Q2 :
  IntoAnd p P Q1 Q2  IntoAnd p (^n P) (^n Q1) (^n Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?laterN_and ?laterN_sep. Qed.
412

413
414
415
416
417
418
419
420
Global Instance into_and_big_sepL_cons {A} p (Φ : nat  A  uPred M) x l :
  IntoAnd p ([ list] k  y  x :: l, Φ k y)
    (Φ 0 x) ([ list] k  y  l, Φ (S k) y).
Proof. apply mk_into_and_sep. by rewrite big_sepL_cons. Qed.
Global Instance into_and_big_sepL_app {A} p (Φ : nat  A  uPred M) l1 l2 :
  IntoAnd p ([ list] k  y  l1 ++ l2, Φ k y)
    ([ list] k  y  l1, Φ k y) ([ list] k  y  l2, Φ (length l1 + k) y).
Proof. apply mk_into_and_sep. by rewrite big_sepL_app. Qed.
421
422
423
424

(* Frame *)
Global Instance frame_here R : Frame R R True.
Proof. by rewrite /Frame right_id. Qed.
Ralf Jung's avatar
Ralf Jung committed
425
Global Instance frame_here_pure φ Q : FromPure Q φ  Frame ⌜φ⌝ Q True.
426
Proof. rewrite /FromPure /Frame=> ->. by rewrite right_id. Qed.
427

428
Class MakeSep (P Q PQ : uPred M) := make_sep : P  Q ⊣⊢ PQ.
429
430
431
432
Global Instance make_sep_true_l P : MakeSep True P P.
Proof. by rewrite /MakeSep left_id. Qed.
Global Instance make_sep_true_r P : MakeSep P True P.
Proof. by rewrite /MakeSep right_id. Qed.
433
Global Instance make_sep_default P Q : MakeSep P Q (P  Q) | 100.
434
435
Proof. done. Qed.
Global Instance frame_sep_l R P1 P2 Q Q' :
436
  Frame R P1 Q  MakeSep Q P2 Q'  Frame R (P1  P2) Q' | 9.
437
438
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed.
Global Instance frame_sep_r R P1 P2 Q Q' :
439
  Frame R P2 Q  MakeSep P1 Q Q'  Frame R (P1  P2) Q' | 10.
440
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc (comm _ R) assoc. Qed.
441

442
443
444
445
446
447
448
449
450
451
Global Instance frame_big_sepL_cons {A} (Φ : nat  A  uPred M) R Q x l :
  Frame R (Φ 0 x  [ list] k  y  l, Φ (S k) y) Q 
  Frame R ([ list] k  y  x :: l, Φ k y) Q.
Proof. by rewrite /Frame big_sepL_cons. Qed.
Global Instance frame_big_sepL_app {A} (Φ : nat  A  uPred M) R Q l1 l2 :
  Frame R (([ list] k  y  l1, Φ k y) 
           [ list] k  y  l2, Φ (length l1 + k) y) Q 
  Frame R ([ list] k  y  l1 ++ l2, Φ k y) Q.
Proof. by rewrite /Frame big_sepL_app. Qed.

452
453
454
455
456
Class MakeAnd (P Q PQ : uPred M) := make_and : P  Q ⊣⊢ PQ.
Global Instance make_and_true_l P : MakeAnd True P P.
Proof. by rewrite /MakeAnd left_id. Qed.
Global Instance make_and_true_r P : MakeAnd P True P.
Proof. by rewrite /MakeAnd right_id. Qed.
457
Global Instance make_and_default P Q : MakeAnd P Q (P  Q) | 100.
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
Proof. done. Qed.
Global Instance frame_and_l R P1 P2 Q Q' :
  Frame R P1 Q  MakeAnd Q P2 Q'  Frame R (P1  P2) Q' | 9.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Global Instance frame_and_r R P1 P2 Q Q' :
  Frame R P2 Q  MakeAnd P1 Q Q'  Frame R (P1  P2) Q' | 10.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.

Class MakeOr (P Q PQ : uPred M) := make_or : P  Q ⊣⊢ PQ.
Global Instance make_or_true_l P : MakeOr True P True.
Proof. by rewrite /MakeOr left_absorb. Qed.
Global Instance make_or_true_r P : MakeOr P True True.
Proof. by rewrite /MakeOr right_absorb. Qed.
Global Instance make_or_default P Q : MakeOr P Q (P  Q) | 100.
Proof. done. Qed.
Global Instance frame_or R P1 P2 Q1 Q2 Q :
  Frame R P1 Q1  Frame R P2 Q2  MakeOr Q1 Q2 Q  Frame R (P1  P2) Q.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.

Global Instance frame_wand R P1 P2 Q2 :
478
  Frame R P2 Q2  Frame R (P1 - P2) (P1 - Q2).
479
480
481
482
483
484
485
486
487
488
489
Proof.
  rewrite /Frame=> ?. apply wand_intro_l.
  by rewrite assoc (comm _ P1) -assoc wand_elim_r.
Qed.

Class MakeLater (P lP : uPred M) := make_later :  P ⊣⊢ lP.
Global Instance make_later_true : MakeLater True True.
Proof. by rewrite /MakeLater later_True. Qed.
Global Instance make_later_default P : MakeLater P ( P) | 100.
Proof. done. Qed.

490
Global Instance frame_later R R' P Q Q' :
491
  IntoLaterN 1 R' R  Frame R P Q  MakeLater Q Q'  Frame R' ( P) Q'.
492
Proof.
493
494
495
496
497
498
499
500
501
502
503
504
505
  rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-. by rewrite later_sep.
Qed.

Class MakeLaterN (n : nat) (P lP : uPred M) := make_laterN : ^n P ⊣⊢ lP.
Global Instance make_laterN_true n : MakeLaterN n True True.
Proof. by rewrite /MakeLaterN laterN_True. Qed.
Global Instance make_laterN_default P : MakeLaterN n P (^n P) | 100.
Proof. done. Qed.

Global Instance frame_laterN n R R' P Q Q' :
  IntoLaterN n R' R  Frame R P Q  MakeLaterN n Q Q'  Frame R' (^n P) Q'.
Proof.
  rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-. by rewrite laterN_sep.
506
507
Qed.

508
509
510
511
Class MakeExcept0 (P Q : uPred M) := make_except_0 :  P ⊣⊢ Q.
Global Instance make_except_0_True : MakeExcept0 True True.
Proof. by rewrite /MakeExcept0 except_0_True. Qed.
Global Instance make_except_0_default P : MakeExcept0 P ( P) | 100.
512
513
Proof. done. Qed.

514
515
Global Instance frame_except_0 R P Q Q' :
  Frame R P Q  MakeExcept0 Q Q'  Frame R ( P) Q'.
516
Proof.
517
518
  rewrite /Frame /MakeExcept0=><- <-.
  by rewrite except_0_sep -(except_0_intro R).
519
520
Qed.

521
522
523
524
525
526
527
Global Instance frame_exist {A} R (Φ Ψ : A  uPred M) :
  ( a, Frame R (Φ a) (Ψ a))  Frame R ( x, Φ x) ( x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed.
Global Instance frame_forall {A} R (Φ Ψ : A  uPred M) :
  ( a, Frame R (Φ a) (Ψ a))  Frame R ( x, Φ x) ( x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.

528
Global Instance frame_bupd R P Q : Frame R P Q  Frame R (|==> P) (|==> Q).
529
Proof. rewrite /Frame=><-. by rewrite bupd_frame_l. Qed.
530

531
532
533
(* FromOr *)
Global Instance from_or_or P1 P2 : FromOr (P1  P2) P1 P2.
Proof. done. Qed.
534
Global Instance from_or_bupd P Q1 Q2 :
535
  FromOr P Q1 Q2  FromOr (|==> P) (|==> Q1) (|==> Q2).
536
Proof. rewrite /FromOr=><-. apply or_elim; apply bupd_mono; auto with I. Qed.
537
538
Global Instance from_or_pure φ ψ : @FromOr M ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromOr pure_or. Qed.
539
540
541
Global Instance from_or_always P Q1 Q2 :
  FromOr P Q1 Q2  FromOr ( P) ( Q1) ( Q2).
Proof. rewrite /FromOr=> <-. by rewrite always_or. Qed.
542
543
Global Instance from_or_later P Q1 Q2 :
  FromOr P Q1 Q2  FromOr ( P) ( Q1) ( Q2).
544
Proof. rewrite /FromOr=><-. by rewrite later_or. Qed.
545
546
547
Global Instance from_or_laterN n P Q1 Q2 :
  FromOr P Q1 Q2  FromOr (^n P) (^n Q1) (^n Q2).
Proof. rewrite /FromOr=><-. by rewrite laterN_or. Qed.
548
549
550
551

(* IntoOr *)
Global Instance into_or_or P Q : IntoOr (P  Q) P Q.
Proof. done. Qed.
552
553
554
555
556
Global Instance into_or_pure φ ψ : @IntoOr M ⌜φ  ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoOr pure_or. Qed.
Global Instance into_or_always P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite always_or. Qed.
557
558
559
Global Instance into_or_later P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed.
560
561
562
Global Instance into_or_laterN n P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr (^n P) (^n Q1) (^n Q2).
Proof. rewrite /IntoOr=>->. by rewrite laterN_or. Qed.
563
564

(* FromExist *)
565
Global Instance from_exist_exist {A} (Φ : A  uPred M): FromExist ( a, Φ a) Φ.
566
Proof. done. Qed.
567
Global Instance from_exist_bupd {A} P (Φ : A  uPred M) :
568
  FromExist P Φ  FromExist (|==> P) (λ a, |==> Φ a)%I.
569
570
571
Proof.
  rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
572
573
574
575
576
577
578
579
Global Instance from_exist_pure {A} (φ : A  Prop) :
  @FromExist M A ⌜∃ x, φ x (λ a, ⌜φ a)%I.
Proof. by rewrite /FromExist pure_exist. Qed.
Global Instance from_exist_always {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist ( P) (λ a,  (Φ a))%I.
Proof.
  rewrite /FromExist=> <-. apply exist_elim=>x. apply always_mono, exist_intro.
Qed.
580
581
Global Instance from_exist_later {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist ( P) (λ a,  (Φ a))%I.
582
583
584
Proof.
  rewrite /FromExist=> <-. apply exist_elim=>x. apply later_mono, exist_intro.
Qed.
585
586
587
588
589
Global Instance from_exist_laterN {A} n P (Φ : A  uPred M) :
  FromExist P Φ  FromExist (^n P) (λ a, ^n (Φ a))%I.
Proof.
  rewrite /FromExist=> <-. apply exist_elim=>x. apply laterN_mono, exist_intro.
Qed.
590
591
592
593

(* IntoExist *)
Global Instance into_exist_exist {A} (Φ : A  uPred M) : IntoExist ( a, Φ a) Φ.
Proof. done. Qed.
594
595
596
Global Instance into_exist_pure {A} (φ : A  Prop) :
  @IntoExist M A ⌜∃ x, φ x (λ a, ⌜φ a)%I.
Proof. by rewrite /IntoExist pure_exist. Qed.
597
598
599
Global Instance into_exist_always {A} P (Φ : A  uPred M) :
  IntoExist P Φ  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP. by rewrite HP always_exist. Qed.
600
601
602
603
604
605
Global Instance into_exist_later {A} P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed.
Global Instance into_exist_laterN {A} n P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist (^n P) (λ a, ^n (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP laterN_exist. Qed.
606

607
608
609
610
611
612
613
(* IntoForall *)
Global Instance into_forall_forall {A} (Φ : A  uPred M) : IntoForall ( a, Φ a) Φ.
Proof. done. Qed.
Global Instance into_forall_always {A} P (Φ : A  uPred M) :
  IntoForall P Φ  IntoForall ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoForall=> HP. by rewrite HP always_forall. Qed.

614
615
(* FromModal *)
Global Instance from_modal_later P : FromModal ( P) P.
616
Proof. apply later_intro. Qed.
617
Global Instance from_modal_bupd P : FromModal (|==> P) P.
618
Proof. apply bupd_intro. Qed.
619
Global Instance from_modal_except_0 P : FromModal ( P) P.
620
621
622
Proof. apply except_0_intro. Qed.

(* ElimModal *)
623
Global Instance elim_modal_wand P P' Q Q' R :
624
  ElimModal P P' Q Q'  ElimModal P P' (R - Q) (R - Q').
625
626
627
628
629
630
631
632
633
634
Proof.
  rewrite /ElimModal=> H. apply wand_intro_r.
  by rewrite wand_curry -assoc (comm _ P') -wand_curry wand_elim_l.
Qed.
Global Instance forall_modal_wand {A} P P' (Φ Ψ : A  uPred M) :
  ( x, ElimModal P P' (Φ x) (Ψ x))  ElimModal P P' ( x, Φ x) ( x, Ψ x).
Proof.
  rewrite /ElimModal=> H. apply forall_intro=> a. by rewrite (forall_elim a).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
635
636
637
Global Instance elim_modal_always P Q : ElimModal ( P) P Q Q.
Proof. intros. by rewrite /ElimModal always_elim wand_elim_r. Qed.

638
639
640
641
642
Global Instance elim_modal_bupd P Q : ElimModal (|==> P) P (|==> Q) (|==> Q).
Proof. by rewrite /ElimModal bupd_frame_r wand_elim_r bupd_trans. Qed.

Global Instance elim_modal_except_0 P Q : IsExcept0 Q  ElimModal ( P) P Q Q.
Proof.
643
  intros. rewrite /ElimModal (except_0_intro (_ - _)).
644
645
646
647
648
  by rewrite -except_0_sep wand_elim_r.
Qed.
Global Instance elim_modal_timeless_bupd P Q :
  TimelessP P  IsExcept0 Q  ElimModal ( P) P Q Q.
Proof.
649
  intros. rewrite /ElimModal (except_0_intro (_ - _)) (timelessP P).
650
651
  by rewrite -except_0_sep wand_elim_r.
Qed.
652
653
654
655
656
657
Global Instance elim_modal_timeless_bupd' p P Q :
  TimelessP P  IsExcept0 Q  ElimModal (?p P) P Q Q.
Proof.
  destruct p; simpl; auto using elim_modal_timeless_bupd.
  intros _ _. by rewrite /ElimModal wand_elim_r.
Qed.
658

659
660
661
662
663
Global Instance is_except_0_except_0 P : IsExcept0 ( P).
Proof. by rewrite /IsExcept0 except_0_idemp. Qed.
Global Instance is_except_0_later P : IsExcept0 ( P).
Proof. by rewrite /IsExcept0 except_0_later. Qed.
Global Instance is_except_0_bupd P : IsExcept0 P  IsExcept0 (|==> P).
664
Proof.
665
666
  rewrite /IsExcept0=> HP.
  by rewrite -{2}HP -(except_0_idemp P) -except_0_bupd -(except_0_intro P).
667
Qed.
668
End classes.
669

670
Hint Mode IntoLaterN' + - ! - : typeclass_instances.