upred.v 50.7 KB
Newer Older
1
From algebra Require Export cmra.
2
3
Local Hint Extern 1 (_  _) => etrans; [eassumption|].
Local Hint Extern 1 (_  _) => etrans; [|eassumption].
Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
Local Hint Extern 10 (_  _) => omega.

Robbert Krebbers's avatar
Robbert Krebbers committed
6
Record uPred (M : cmraT) : Type := IProp {
Robbert Krebbers's avatar
Robbert Krebbers committed
7
  uPred_holds :> nat  M  Prop;
Robbert Krebbers's avatar
Robbert Krebbers committed
8
9
  uPred_ne n x1 x2 : uPred_holds n x1  x1 {n} x2  uPred_holds n x2;
  uPred_weaken  n1 n2 x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
10
    uPred_holds n1 x1  x1  x2  n2  n1  {n2} x2  uPred_holds n2 x2
Robbert Krebbers's avatar
Robbert Krebbers committed
11
}.
12
Arguments uPred_holds {_} _ _ _ : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
Add Printing Constructor uPred.
Instance: Params (@uPred_holds) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
15

16
17
18
19
Delimit Scope uPred_scope with I.
Bind Scope uPred_scope with uPred.
Arguments uPred_holds {_} _%I _ _.

20
21
Section cofe.
  Context {M : cmraT}.
22
23
24
25
26
27
28

  Inductive uPred_equiv' (P Q : uPred M) : Prop :=
    { uPred_in_equiv :  n x, {n} x  P n x  Q n x }.
  Instance uPred_equiv : Equiv (uPred M) := uPred_equiv'.
  Inductive uPred_dist' (n : nat) (P Q : uPred M) : Prop :=
    { uPred_in_dist :  n' x, n'  n  {n'} x  P n' x  Q n' x }.
  Instance uPred_dist : Dist (uPred M) := uPred_dist'.
29
  Program Instance uPred_compl : Compl (uPred M) := λ c,
30
    {| uPred_holds n x := c (S n) n x |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  Next Obligation. by intros c n x y ??; simpl in *; apply uPred_ne with x. Qed.
32
  Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
    intros c n1 n2 x1 x2 ????; simpl in *.
34
    apply (chain_cauchy c n2 (S n1)); eauto using uPred_weaken.
35
36
37
38
  Qed.
  Definition uPred_cofe_mixin : CofeMixin (uPred M).
  Proof.
    split.
39
40
41
    - intros P Q; split.
      + by intros HPQ n; split=> i x ??; apply HPQ.
      + intros HPQ; split=> n x ?; apply HPQ with n; auto.
42
    - intros n; split.
43
44
45
46
47
48
      + by intros P; split=> x i.
      + by intros P Q HPQ; split=> x i ??; symmetry; apply HPQ.
      + intros P Q Q' HP HQ; split=> i x ??.
        by trans (Q i x);[apply HP|apply HQ].
    - intros n P Q HPQ; split=> i x ??; apply HPQ; auto.
    - intros n c; split=>i x ??; symmetry; apply (chain_cauchy c i (S n)); auto.
49
50
51
52
53
  Qed.
  Canonical Structure uPredC : cofeT := CofeT uPred_cofe_mixin.
End cofe.
Arguments uPredC : clear implicits.

54
Instance uPred_ne' {M} (P : uPred M) n : Proper (dist n ==> iff) (P n).
Robbert Krebbers's avatar
Robbert Krebbers committed
55
Proof. intros x1 x2 Hx; split; eauto using uPred_ne. Qed.
56
57
58
59
Instance uPred_proper {M} (P : uPred M) n : Proper (() ==> iff) (P n).
Proof. by intros x1 x2 Hx; apply uPred_ne', equiv_dist. Qed.

Lemma uPred_holds_ne {M} (P1 P2 : uPred M) n x :
60
  P1 {n} P2  {n} x  P1 n x  P2 n x.
61
Proof. intros HP ?; apply HP; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
62
Lemma uPred_weaken' {M} (P : uPred M) n1 n2 x1 x2 :
63
  x1  x2  n2  n1  {n2} x2  P n1 x1  P n2 x2.
64
Proof. eauto using uPred_weaken. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
66

(** functor *)
67
68
69
70
Program Definition uPred_map {M1 M2 : cmraT} (f : M2 -n> M1)
  `{!CMRAMonotone f} (P : uPred M1) :
  uPred M2 := {| uPred_holds n x := P n (f x) |}.
Next Obligation. by intros M1 M2 f ? P y1 y2 n ? Hy; rewrite /= -Hy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
  naive_solver eauto using uPred_weaken, included_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Qed.
74
Instance uPred_map_ne {M1 M2 : cmraT} (f : M2 -n> M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
75
  `{!CMRAMonotone f} n : Proper (dist n ==> dist n) (uPred_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Proof.
77
78
  intros x1 x2 Hx; split=> n' y ??.
  split; apply Hx; auto using validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
Qed.
80
Lemma uPred_map_id {M : cmraT} (P : uPred M): uPred_map cid P  P.
81
Proof. by split=> n x ?. Qed.
82
Lemma uPred_map_compose {M1 M2 M3 : cmraT} (f : M1 -n> M2) (g : M2 -n> M3)
Robbert Krebbers's avatar
Robbert Krebbers committed
83
    `{!CMRAMonotone f, !CMRAMonotone g} (P : uPred M3):
84
  uPred_map (g  f) P  uPred_map f (uPred_map g P).
85
Proof. by split=> n x Hx. Qed.
86
Lemma uPred_map_ext {M1 M2 : cmraT} (f g : M1 -n> M2)
87
88
89
      `{!CMRAMonotone f} `{!CMRAMonotone g}:
  ( x, f x  g x) ->  x, uPred_map f x  uPred_map g x.
Proof. intros Hf P; split=> n x Hx /=; by rewrite /uPred_holds /= Hf. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
90
Definition uPredC_map {M1 M2 : cmraT} (f : M2 -n> M1) `{!CMRAMonotone f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
91
  uPredC M1 -n> uPredC M2 := CofeMor (uPred_map f : uPredC M1  uPredC M2).
Robbert Krebbers's avatar
Robbert Krebbers committed
92
Lemma upredC_map_ne {M1 M2 : cmraT} (f g : M2 -n> M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
93
    `{!CMRAMonotone f, !CMRAMonotone g} n :
94
  f {n} g  uPredC_map f {n} uPredC_map g.
Robbert Krebbers's avatar
Robbert Krebbers committed
95
Proof.
96
  by intros Hfg P; split=> n' y ??;
97
    rewrite /uPred_holds /= (dist_le _ _ _ _(Hfg y)); last lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
98
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
99
100

(** logical entailement *)
101
102
Inductive uPred_entails {M} (P Q : uPred M) : Prop :=
  { uPred_in_entails :  n x, {n} x  P n x  Q n x }.
103
Hint Extern 0 (uPred_entails _ _) => reflexivity.
104
Instance uPred_entails_rewrite_relation M : RewriteRelation (@uPred_entails M).
Robbert Krebbers's avatar
Robbert Krebbers committed
105
106

(** logical connectives *)
107
Program Definition uPred_const_def {M} (φ : Prop) : uPred M :=
108
  {| uPred_holds n x := φ |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
Solve Obligations with done.
110
111
112
113
114
Definition uPred_const_aux : { x | x = @uPred_const_def }. by eexists. Qed.
Definition uPred_const {M} := proj1_sig uPred_const_aux M.
Definition uPred_const_eq :
  @uPred_const = @uPred_const_def := proj2_sig uPred_const_aux.

115
Instance uPred_inhabited M : Inhabited (uPred M) := populate (uPred_const True).
Robbert Krebbers's avatar
Robbert Krebbers committed
116

117
Program Definition uPred_and_def {M} (P Q : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
120
121
122
123
124
Definition uPred_and_aux : { x | x = @uPred_and_def }. by eexists. Qed.
Definition uPred_and {M} := proj1_sig uPred_and_aux M.
Definition uPred_and_eq: @uPred_and = @uPred_and_def := proj2_sig uPred_and_aux.

Program Definition uPred_or_def {M} (P Q : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
125
126
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
127
128
129
130
131
Definition uPred_or_aux : { x | x = @uPred_or_def }. by eexists. Qed.
Definition uPred_or {M} := proj1_sig uPred_or_aux M.
Definition uPred_or_eq: @uPred_or = @uPred_or_def := proj2_sig uPred_or_aux.

Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
132
  {| uPred_holds n x :=  n' x',
Robbert Krebbers's avatar
Robbert Krebbers committed
133
       x  x'  n'  n  {n'} x'  P n' x'  Q n' x' |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
136
  intros M P Q n1 x1' x1 HPQ Hx1 n2 x2 ????.
  destruct (cmra_included_dist_l n1 x1 x2 x1') as (x2'&?&Hx2); auto.
137
  assert (x2' {n2} x2) as Hx2' by (by apply dist_le with n1).
138
  assert ({n2} x2') by (by rewrite Hx2'); rewrite -Hx2'.
Robbert Krebbers's avatar
Robbert Krebbers committed
139
  eauto using uPred_weaken, uPred_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
Next Obligation. intros M P Q [|n] x1 x2; auto with lia. Qed.
142
143
144
145
Definition uPred_impl_aux : { x | x = @uPred_impl_def }. by eexists. Qed.
Definition uPred_impl {M} := proj1_sig uPred_impl_aux M.
Definition uPred_impl_eq :
  @uPred_impl = @uPred_impl_def := proj2_sig uPred_impl_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
146

147
Program Definition uPred_forall_def {M A} (Ψ : A  uPred M) : uPred M :=
148
  {| uPred_holds n x :=  a, Ψ a n x |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
149
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
150
151
152
153
154
155
Definition uPred_forall_aux : { x | x = @uPred_forall_def }. by eexists. Qed.
Definition uPred_forall {M A} := proj1_sig uPred_forall_aux M A.
Definition uPred_forall_eq :
  @uPred_forall = @uPred_forall_def := proj2_sig uPred_forall_aux.

Program Definition uPred_exist_def {M A} (Ψ : A  uPred M) : uPred M :=
156
  {| uPred_holds n x :=  a, Ψ a n x |}.
157
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
158
159
160
Definition uPred_exist_aux : { x | x = @uPred_exist_def }. by eexists. Qed.
Definition uPred_exist {M A} := proj1_sig uPred_exist_aux M A.
Definition uPred_exist_eq: @uPred_exist = @uPred_exist_def := proj2_sig uPred_exist_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
161

162
Program Definition uPred_eq_def {M} {A : cofeT} (a1 a2 : A) : uPred M :=
163
  {| uPred_holds n x := a1 {n} a2 |}.
164
Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)).
165
166
167
Definition uPred_eq_aux : { x | x = @uPred_eq_def }. by eexists. Qed.
Definition uPred_eq {M A} := proj1_sig uPred_eq_aux M A.
Definition uPred_eq_eq: @uPred_eq = @uPred_eq_def := proj2_sig uPred_eq_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169
Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M :=
170
  {| uPred_holds n x :=  x1 x2, x {n} x1  x2  P n x1  Q n x2 |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
171
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
172
  by intros M P Q n x y (x1&x2&?&?&?) Hxy; exists x1, x2; rewrite -Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
174
Qed.
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  intros M P Q n1 n2 x y (x1&x2&Hx&?&?) Hxy ??.
176
  assert ( x2', y {n2} x1  x2'  x2  x2') as (x2'&Hy&?).
177
  { destruct Hxy as [z Hy]; exists (x2  z); split; eauto using cmra_included_l.
178
    apply dist_le with n1; auto. by rewrite (assoc op) -Hx Hy. }
179
  clear Hxy; cofe_subst y; exists x1, x2'; split_and?; [done| |].
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
  - apply uPred_weaken with n1 x1; eauto using cmra_validN_op_l.
  - apply uPred_weaken with n1 x2; eauto using cmra_validN_op_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
182
Qed.
183
184
185
Definition uPred_sep_aux : { x | x = @uPred_sep_def }. by eexists. Qed.
Definition uPred_sep {M} := proj1_sig uPred_sep_aux M.
Definition uPred_sep_eq: @uPred_sep = @uPred_sep_def := proj2_sig uPred_sep_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
186

187
Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  {| uPred_holds n x :=  n' x',
Robbert Krebbers's avatar
Robbert Krebbers committed
189
       n'  n  {n'} (x  x')  P n' x'  Q n' (x  x') |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
190
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
191
  intros M P Q n1 x1 x2 HPQ Hx n2 x3 ???; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
  rewrite -(dist_le _ _ _ _ Hx) //; apply HPQ; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
  by rewrite (dist_le _ _ _ _ Hx).
Robbert Krebbers's avatar
Robbert Krebbers committed
194
195
Qed.
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
197
  intros M P Q n1 n2 x1 x2 HPQ ??? n3 x3 ???; simpl in *.
  apply uPred_weaken with n3 (x1  x3);
198
    eauto using cmra_validN_included, cmra_preserving_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
Qed.
200
201
202
203
Definition uPred_wand_aux : { x | x = @uPred_wand_def }. by eexists. Qed.
Definition uPred_wand {M} := proj1_sig uPred_wand_aux M.
Definition uPred_wand_eq :
  @uPred_wand = @uPred_wand_def := proj2_sig uPred_wand_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
204

205
Program Definition uPred_always_def {M} (P : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
206
  {| uPred_holds n x := P n (unit x) |}.
207
Next Obligation. by intros M P x1 x2 n ? Hx; rewrite /= -Hx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
209
  intros M P n1 n2 x1 x2 ????; eapply uPred_weaken with n1 (unit x1);
210
    eauto using cmra_unit_preserving, cmra_unit_validN.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
Qed.
212
213
214
215
216
217
Definition uPred_always_aux : { x | x = @uPred_always_def }. by eexists. Qed.
Definition uPred_always {M} := proj1_sig uPred_always_aux M.
Definition uPred_always_eq :
  @uPred_always = @uPred_always_def := proj2_sig uPred_always_aux.

Program Definition uPred_later_def {M} (P : uPred M) : uPred M :=
218
219
220
221
222
  {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation. intros M P [|n] ??; eauto using uPred_ne,(dist_le (A:=M)). Qed.
Next Obligation.
  intros M P [|n1] [|n2] x1 x2; eauto using uPred_weaken,cmra_validN_S; try lia.
Qed.
223
224
225
226
Definition uPred_later_aux : { x | x = @uPred_later_def }. by eexists. Qed.
Definition uPred_later {M} := proj1_sig uPred_later_aux M.
Definition uPred_later_eq :
  @uPred_later = @uPred_later_def := proj2_sig uPred_later_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
227

228
Program Definition uPred_ownM_def {M : cmraT} (a : M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
229
  {| uPred_holds n x := a {n} x |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
Next Obligation. by intros M a n x1 x2 [a' ?] Hx; exists a'; rewrite -Hx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
231
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
  intros M a n1 n2 x1 x [a' Hx1] [x2 Hx] ??.
233
  exists (a'  x2). by rewrite (assoc op) -(dist_le _ _ _ _ Hx1) // Hx.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
Qed.
235
236
237
238
239
240
Definition uPred_ownM_aux : { x | x = @uPred_ownM_def }. by eexists. Qed.
Definition uPred_ownM {M} := proj1_sig uPred_ownM_aux M.
Definition uPred_ownM_eq :
  @uPred_ownM = @uPred_ownM_def := proj2_sig uPred_ownM_aux.

Program Definition uPred_valid_def {M A : cmraT} (a : A) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
241
  {| uPred_holds n x := {n} a |}.
242
Solve Obligations with naive_solver eauto 2 using cmra_validN_le.
243
244
245
246
Definition uPred_valid_aux : { x | x = @uPred_valid_def }. by eexists. Qed.
Definition uPred_valid {M A} := proj1_sig uPred_valid_aux M A.
Definition uPred_valid_eq :
  @uPred_valid = @uPred_valid_def := proj2_sig uPred_valid_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
247

248
249
Notation "P ⊑ Q" := (uPred_entails P%I Q%I) (at level 70) : C_scope.
Notation "(⊑)" := uPred_entails (only parsing) : C_scope.
250
251
Notation "■ φ" := (uPred_const φ%C%type)
  (at level 20, right associativity) : uPred_scope.
Ralf Jung's avatar
Ralf Jung committed
252
Notation "x = y" := (uPred_const (x%C%type = y%C%type)) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
254
255
Notation "'False'" := (uPred_const False) : uPred_scope.
Notation "'True'" := (uPred_const True) : uPred_scope.
Infix "∧" := uPred_and : uPred_scope.
256
Notation "(∧)" := uPred_and (only parsing) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
257
Infix "∨" := uPred_or : uPred_scope.
258
Notation "(∨)" := uPred_or (only parsing) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
260
Infix "→" := uPred_impl : uPred_scope.
Infix "★" := uPred_sep (at level 80, right associativity) : uPred_scope.
261
Notation "(★)" := uPred_sep (only parsing) : uPred_scope.
262
Notation "P -★ Q" := (uPred_wand P Q)
263
  (at level 199, Q at level 200, right associativity) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
264
Notation "∀ x .. y , P" :=
265
  (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)%I) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
266
Notation "∃ x .. y , P" :=
267
  (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)%I) : uPred_scope.
268
269
Notation "□ P" := (uPred_always P)
  (at level 20, right associativity) : uPred_scope.
270
271
Notation "▷ P" := (uPred_later P)
  (at level 20, right associativity) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
272
Infix "≡" := uPred_eq : uPred_scope.
273
Notation "✓ x" := (uPred_valid x) (at level 20) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
274

275
276
277
Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Infix "↔" := uPred_iff : uPred_scope.

278
Class TimelessP {M} (P : uPred M) := timelessP :  P  (P   False).
279
Arguments timelessP {_} _ {_}.
280
Class AlwaysStable {M} (P : uPred M) := always_stable : P   P.
281
Arguments always_stable {_} _ {_}.
Robbert Krebbers's avatar
Robbert Krebbers committed
282

283
284
285
286
287
288
289
290
Module uPred.
Definition unseal :=
  (uPred_const_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq,
  uPred_exist_eq, uPred_eq_eq, uPred_sep_eq, uPred_wand_eq, uPred_always_eq,
  uPred_later_eq, uPred_ownM_eq, uPred_valid_eq).
Ltac unseal := rewrite !unseal.

Section uPred_logic.
291
Context {M : cmraT}.
292
Implicit Types φ : Prop.
Robbert Krebbers's avatar
Robbert Krebbers committed
293
Implicit Types P Q : uPred M.
294
Implicit Types A : Type.
295
Notation "P ⊑ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
296
Arguments uPred_holds {_} !_ _ _ /.
297
Hint Immediate uPred_in_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
298

299
Global Instance: PreOrder (@uPred_entails M).
300
301
302
303
304
Proof.
  split.
  * by intros P; split=> x i.
  * by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP.
Qed.
305
Global Instance: AntiSymm () (@uPred_entails M).
306
Proof. intros P Q HPQ HQP; split=> x n; by split; [apply HPQ|apply HQP]. Qed.
307
Lemma equiv_spec P Q : P  Q  P  Q  Q  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
308
Proof.
309
  split; [|by intros [??]; apply (anti_symm ())].
310
  intros HPQ; split; split=> x i; apply HPQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
311
Qed.
312
313
314
315
Lemma equiv_entails P Q : P  Q  P  Q.
Proof. apply equiv_spec. Qed.
Lemma equiv_entails_sym P Q : Q  P  P  Q.
Proof. apply equiv_spec. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
Global Instance entails_proper :
317
  Proper (() ==> () ==> iff) (() : relation (uPred M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
318
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
  move => P1 P2 /equiv_spec [HP1 HP2] Q1 Q2 /equiv_spec [HQ1 HQ2]; split; intros.
320
321
  - by trans P1; [|trans Q1].
  - by trans P2; [|trans Q2].
Robbert Krebbers's avatar
Robbert Krebbers committed
322
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
323

324
(** Non-expansiveness and setoid morphisms *)
Robbert Krebbers's avatar
Robbert Krebbers committed
325
Global Instance const_proper : Proper (iff ==> ()) (@uPred_const M).
326
Proof. intros φ1 φ2 Hφ. by unseal; split=> -[|n] ?; try apply Hφ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
327
Global Instance and_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_and M).
Robbert Krebbers's avatar
Robbert Krebbers committed
328
Proof.
329
  intros P P' HP Q Q' HQ; unseal; split=> x n' ??.
330
  split; (intros [??]; split; [by apply HP|by apply HQ]).
Robbert Krebbers's avatar
Robbert Krebbers committed
331
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
332
Global Instance and_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
333
  Proper (() ==> () ==> ()) (@uPred_and M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
Global Instance or_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_or M).
Robbert Krebbers's avatar
Robbert Krebbers committed
335
Proof.
336
  intros P P' HP Q Q' HQ; split=> x n' ??.
337
  unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]).
Robbert Krebbers's avatar
Robbert Krebbers committed
338
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
Global Instance or_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
340
  Proper (() ==> () ==> ()) (@uPred_or M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
Global Instance impl_ne n :
Robbert Krebbers's avatar
Robbert Krebbers committed
342
  Proper (dist n ==> dist n ==> dist n) (@uPred_impl M).
Robbert Krebbers's avatar
Robbert Krebbers committed
343
Proof.
344
  intros P P' HP Q Q' HQ; split=> x n' ??.
345
  unseal; split; intros HPQ x' n'' ????; apply HQ, HPQ, HP; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
346
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
Global Instance impl_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
348
  Proper (() ==> () ==> ()) (@uPred_impl M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
Global Instance sep_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
350
Proof.
351
  intros P P' HP Q Q' HQ; split=> n' x ??.
352
  unseal; split; intros (x1&x2&?&?&?); cofe_subst x;
353
    exists x1, x2; split_and!; try (apply HP || apply HQ);
354
    eauto using cmra_validN_op_l, cmra_validN_op_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
355
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
Global Instance sep_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
357
  Proper (() ==> () ==> ()) (@uPred_sep M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
Global Instance wand_ne n :
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  Proper (dist n ==> dist n ==> dist n) (@uPred_wand M).
Robbert Krebbers's avatar
Robbert Krebbers committed
360
Proof.
361
  intros P P' HP Q Q' HQ; split=> n' x ??; unseal; split; intros HPQ x' n'' ???;
362
    apply HQ, HPQ, HP; eauto using cmra_validN_op_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
363
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
364
Global Instance wand_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
365
  Proper (() ==> () ==> ()) (@uPred_wand M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
366
Global Instance eq_ne (A : cofeT) n :
Robbert Krebbers's avatar
Robbert Krebbers committed
367
  Proper (dist n ==> dist n ==> dist n) (@uPred_eq M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
368
Proof.
369
  intros x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *.
370
371
  * by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto.
  * by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
372
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
373
Global Instance eq_proper (A : cofeT) :
Robbert Krebbers's avatar
Robbert Krebbers committed
374
  Proper (() ==> () ==> ()) (@uPred_eq M A) := ne_proper_2 _.
375
Global Instance forall_ne A n :
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A).
377
378
379
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
380
Global Instance forall_proper A :
Robbert Krebbers's avatar
Robbert Krebbers committed
381
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
382
383
384
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.
385
Global Instance exist_ne A n :
Robbert Krebbers's avatar
Robbert Krebbers committed
386
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A).
387
Proof.
388
389
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ??; split; intros [a ?]; exists a; by apply HΨ.
390
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
Global Instance exist_proper A :
Robbert Krebbers's avatar
Robbert Krebbers committed
392
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
393
Proof.
394
395
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ?; split; intros [a ?]; exists a; by apply HΨ.
396
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
397
Global Instance later_contractive : Contractive (@uPred_later M).
Robbert Krebbers's avatar
Robbert Krebbers committed
398
Proof.
399
  intros n P Q HPQ; unseal; split=> -[|n'] x ??; simpl; [done|].
400
  apply (HPQ n'); eauto using cmra_validN_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
401
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
Global Instance later_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
403
  Proper (() ==> ()) (@uPred_later M) := ne_proper _.
404
405
Global Instance always_ne n : Proper (dist n ==> dist n) (@uPred_always M).
Proof.
406
407
  intros P1 P2 HP.
  unseal; split=> n' x; split; apply HP; eauto using cmra_unit_validN.
408
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
409
Global Instance always_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
410
  Proper (() ==> ()) (@uPred_always M) := ne_proper _.
411
Global Instance ownM_ne n : Proper (dist n ==> dist n) (@uPred_ownM M).
412
Proof.
413
414
  intros a b Ha.
  unseal; split=> n' x ? /=. by rewrite (dist_le _ _ _ _ Ha); last lia.
415
Qed.
416
417
Global Instance ownM_proper: Proper (() ==> ()) (@uPred_ownM M) := ne_proper _.
Global Instance valid_ne {A : cmraT} n :
418
419
Proper (dist n ==> dist n) (@uPred_valid M A).
Proof.
420
421
  intros a b Ha; unseal; split=> n' x ? /=.
  by rewrite (dist_le _ _ _ _ Ha); last lia.
422
Qed.
423
424
Global Instance valid_proper {A : cmraT} :
  Proper (() ==> ()) (@uPred_valid M A) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Global Instance iff_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_iff M).
426
Proof. unfold uPred_iff; solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Global Instance iff_proper :
428
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
430

(** Introduction and elimination rules *)
431
Lemma const_intro φ P : φ  P   φ.
432
Proof. by intros ?; unseal; split. Qed.
433
Lemma const_elim φ Q R : Q   φ  (φ  Q  R)  Q  R.
434
435
436
Proof.
  unseal; intros HQP HQR; split=> n x ??; apply HQR; first eapply HQP; eauto.
Qed.
437
Lemma False_elim P : False  P.
438
Proof. by unseal; split=> n x ?. Qed.
439
Lemma and_elim_l P Q : (P  Q)  P.
440
Proof. by unseal; split=> n x ? [??]. Qed.
441
Lemma and_elim_r P Q : (P  Q)  Q.
442
Proof. by unseal; split=> n x ? [??]. Qed.
443
Lemma and_intro P Q R : P  Q  P  R  P  (Q  R).
444
Proof. intros HQ HR; unseal; split=> n x ??; by split; [apply HQ|apply HR]. Qed.
445
Lemma or_intro_l P Q : P  (P  Q).
446
Proof. unseal; split=> n x ??; left; auto. Qed.
447
Lemma or_intro_r P Q : Q  (P  Q).
448
Proof. unseal; split=> n x ??; right; auto. Qed.
449
Lemma or_elim P Q R : P  R  Q  R  (P  Q)  R.
450
Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed.
451
Lemma impl_intro_r P Q R : (P  Q)  R  P  (Q  R).
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Proof.
453
  unseal; intros HQ; split=> n x ?? n' x' ????.
454
  apply HQ; naive_solver eauto using uPred_weaken.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
Qed.
456
Lemma impl_elim P Q R : P  (Q  R)  P  Q  P  R.
457
Proof. by unseal; intros HP HP'; split=> n x ??; apply HP with n x, HP'. Qed.
458
Lemma forall_intro {A} P (Ψ : A  uPred M): ( a, P  Ψ a)  P  ( a, Ψ a).
459
Proof. unseal; intros HPΨ; split=> n x ?? a; by apply HPΨ. Qed.
460
Lemma forall_elim {A} {Ψ : A  uPred M} a : ( a, Ψ a)  Ψ a.
461
Proof. unseal; split=> n x ? HP; apply HP. Qed.
462
Lemma exist_intro {A} {Ψ : A  uPred M} a : Ψ a  ( a, Ψ a).
463
Proof. unseal; split=> n x ??; by exists a. Qed.
464
Lemma exist_elim {A} (Φ : A  uPred M) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
465
Proof. unseal; intros HΦΨ; split=> n x ? [a ?]; by apply HΦΨ with a. Qed.
466
Lemma eq_refl {A : cofeT} (a : A) P : P  (a  a).
467
Proof. unseal; by split=> n x ??; simpl. Qed.
468
469
Lemma eq_rewrite {A : cofeT} a b (Ψ : A  uPred M) P
  `{HΨ :  n, Proper (dist n ==> dist n) Ψ} : P  (a  b)  P  Ψ a  P  Ψ b.
470
Proof.
471
  unseal; intros Hab Ha; split=> n x ??.
472
  apply HΨ with n a; auto. by symmetry; apply Hab with x. by apply Ha.
473
Qed.
474
Lemma eq_equiv `{Empty M, !CMRAIdentity M} {A : cofeT} (a b : A) :
475
  True  (a  b)  a  b.
476
Proof.
477
  unseal=> Hab; apply equiv_dist; intros n; apply Hab with ; last done.
478
  apply cmra_valid_validN, cmra_empty_valid.
479
Qed.
480
Lemma iff_equiv P Q : True  (P  Q)  P  Q.
481
482
483
484
Proof.
  rewrite /uPred_iff; unseal=> HPQ.
  split=> n x ?; split; intros; by apply HPQ with n x.
Qed.
485
486

(* Derived logical stuff *)
Robbert Krebbers's avatar
Robbert Krebbers committed
487
488
Lemma True_intro P : P  True.
Proof. by apply const_intro. Qed.
489
Lemma and_elim_l' P Q R : P  R  (P  Q)  R.
490
Proof. by rewrite and_elim_l. Qed.
491
Lemma and_elim_r' P Q R : Q  R  (P  Q)  R.
492
Proof. by rewrite and_elim_r. Qed.
493
Lemma or_intro_l' P Q R : P  Q  P  (Q  R).
494
Proof. intros ->; apply or_intro_l. Qed.
495
Lemma or_intro_r' P Q R : P  R  P  (Q  R).
496
Proof. intros ->; apply or_intro_r. Qed.
497
Lemma exist_intro' {A} P (Ψ : A  uPred M) a : P  Ψ a  P  ( a, Ψ a).
498
Proof. intros ->; apply exist_intro. Qed.
Ralf Jung's avatar
Ralf Jung committed
499
Lemma forall_elim' {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)  ( a, P  Ψ a).
500
Proof. move=> HP a. by rewrite HP forall_elim. Qed.
501

502
Hint Resolve or_elim or_intro_l' or_intro_r'.
Robbert Krebbers's avatar
Robbert Krebbers committed
503
504
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.
505

506
507
Lemma impl_intro_l P Q R : (Q  P)  R  P  (Q  R).
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
508
509
510
511
512
513
514
515
Lemma impl_elim_l P Q : ((P  Q)  P)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : (P  (P  Q))  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : P  (Q  R)  (P  Q)  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : Q  (P  R)  (P  Q)  R.
Proof. intros; apply impl_elim with P; auto. Qed.
516
Lemma impl_entails P Q : True  (P  Q)  P  Q.
517
Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
518
Lemma entails_impl P Q : (P  Q)  True  (P  Q).
519
Proof. auto using impl_intro_l. Qed.
520

521
522
Lemma const_mono φ1 φ2 : (φ1  φ2)   φ1   φ2.
Proof. intros; apply const_elim with φ1; eauto using const_intro. Qed.
523
Lemma and_mono P P' Q Q' : P  Q  P'  Q'  (P  P')  (Q  Q').
524
Proof. auto. Qed.
525
526
527
528
Lemma and_mono_l P P' Q : P  Q  (P  P')  (Q  P').
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : P'  Q'  (P  P')  (P  Q').
Proof. by apply and_mono. Qed.
529
Lemma or_mono P P' Q Q' : P  Q  P'  Q'  (P  P')  (Q  Q').
530
Proof. auto. Qed.
531
532
533
534
Lemma or_mono_l P P' Q : P  Q  (P  P')  (Q  P').
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : P'  Q'  (P  P')  (P  Q').
Proof. by apply or_mono. Qed.
535
Lemma impl_mono P P' Q Q' : Q  P  P'  Q'  (P  P')  (Q  Q').
536
Proof.
537
  intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
538
  apply impl_elim with P; eauto.
539
Qed.
540
541
Lemma forall_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)  ( a, Ψ a).
542
Proof.
543
  intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim.
544
Qed.
545
546
547
Lemma exist_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)  ( a, Ψ a).
Proof. intros HΦ. apply exist_elim=> a; rewrite (HΦ a); apply exist_intro. Qed.
548
Global Instance const_mono' : Proper (impl ==> ()) (@uPred_const M).
549
Proof. intros φ1 φ2; apply const_mono. Qed.
550
Global Instance and_mono' : Proper (() ==> () ==> ()) (@uPred_and M).
Robbert Krebbers's avatar
Robbert Krebbers committed
551
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
552
553
554
Global Instance and_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
555
Global Instance or_mono' : Proper (() ==> () ==> ()) (@uPred_or M).
Robbert Krebbers's avatar
Robbert Krebbers committed
556
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
557
558
559
Global Instance or_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
Global Instance impl_mono' :
561
  Proper (flip () ==> () ==> ()) (@uPred_impl M).
Robbert Krebbers's avatar
Robbert Krebbers committed
562
563
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
Global Instance forall_mono' A :
564
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
565
566
Proof. intros P1 P2; apply forall_mono. Qed.
Global Instance exist_mono' A :
567
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
568
Proof. intros P1 P2; apply exist_mono. Qed.
569

570
571
572
573
574
575
Global Instance and_idem : IdemP () (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_idem : IdemP () (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_comm : Comm () (@uPred_and M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
576
Global Instance True_and : LeftId () True%I (@uPred_and M).
577
Proof. intros P; apply (anti_symm ()); auto. Qed.
578
Global Instance and_True : RightId () True%I (@uPred_and M).
579
Proof. intros P; apply (anti_symm ()); auto. Qed.
580
Global Instance False_and : LeftAbsorb () False%I (@uPred_and M).
581
Proof. intros P; apply (anti_symm ()); auto. Qed.
582
Global Instance and_False : RightAbsorb () False%I (@uPred_and M).
583
Proof. intros P; apply (anti_symm ()); auto. Qed.
584
Global Instance True_or : LeftAbsorb () True%I (@uPred_or M).
585
Proof. intros P; apply (anti_symm ()); auto. Qed.
586
Global Instance or_True : RightAbsorb () True%I (@uPred_or M).
587
Proof. intros P; apply (anti_symm ()); auto. Qed.
588
Global Instance False_or : LeftId () False%I (@uPred_or M).
589
Proof. intros P; apply (anti_symm ()); auto. Qed.
590
Global Instance or_False : RightId () False%I (@uPred_or M).
591
592
593
594
595
596
597
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_assoc : Assoc () (@uPred_and M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance or_comm : Comm () (@uPred_or M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance or_assoc : Assoc () (@uPred_or M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
598
599
Global Instance True_impl : LeftId () True%I (@uPred_impl M).
Proof.
600
  intros P; apply (anti_symm ()).
601
602
  - by rewrite -(left_id True%I uPred_and (_  _)%I) impl_elim_r.
  - by apply impl_intro_l; rewrite left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
603
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
604
605
606
Lemma iff_refl Q P : Q  (P  P).
Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed.

607
Lemma or_and_l P Q R : (P  Q  R)%I  ((P  Q)  (P  R))%I.
608
Proof.
609
  apply (anti_symm ()); first auto.
610
  do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
611
Qed.
612
Lemma or_and_r P Q R : (P  Q  R)%I  ((P  R)  (Q  R))%I.
613
Proof. by rewrite -!(comm _ R) or_and_l. Qed.
614
615
Lemma and_or_l P Q R : (P  (Q  R))%I  (P  Q  P  R)%I.
Proof.
616
  apply (anti_symm ()); last auto.
617
  apply impl_elim_r', or_elim; apply impl_intro_l; auto.
618
619
Qed.
Lemma and_or_r P Q R : ((P  Q)  R)%I  (P  R  Q  R)%I.
620
Proof. by rewrite -!(comm _ R) and_or_l. Qed.
621
Lemma and_exist_l {A} P (Ψ : A  uPred M) : (P   a, Ψ a)%I  ( a, P  Ψ a)%I.
622
Proof.
623
  apply (anti_symm ()).
<