agree.v 7.55 KB
Newer Older
1
Require Export algebra.cmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
3
Local Hint Extern 10 (_  _) => omega.

4
Record agree (A : Type) : Type := Agree {
Robbert Krebbers's avatar
Robbert Krebbers committed
5
6
7
  agree_car :> nat  A;
  agree_is_valid : nat  Prop;
  agree_valid_0 : agree_is_valid 0;
Robbert Krebbers's avatar
Robbert Krebbers committed
8
  agree_valid_S n : agree_is_valid (S n)  agree_is_valid n
Robbert Krebbers's avatar
Robbert Krebbers committed
9
}.
10
11
12
Arguments Agree {_} _ _ _ _.
Arguments agree_car {_} _ _.
Arguments agree_is_valid {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14

Section agree.
15
Context {A : cofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17
Instance agree_validN : ValidN (agree A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
20
21
  agree_is_valid x n   n', n'  n  x n' ={n'}= x n.
Lemma agree_valid_le (x : agree A) n n' :
  agree_is_valid x n  n'  n  agree_is_valid x n'.
Proof. induction 2; eauto using agree_valid_S. Qed.
22
Instance agree_equiv : Equiv (agree A) := λ x y,
Robbert Krebbers's avatar
Robbert Krebbers committed
23
24
  ( n, agree_is_valid x n  agree_is_valid y n) 
  ( n, agree_is_valid x n  x n ={n}= y n).
25
Instance agree_dist : Dist (agree A) := λ n x y,
Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
  ( n', n'  n  agree_is_valid x n'  agree_is_valid y n') 
  ( n', n'  n  agree_is_valid x n'  x n' ={n'}= y n').
28
Program Instance agree_compl : Compl (agree A) := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
29
  {| agree_car n := c n n; agree_is_valid n := agree_is_valid (c n) n |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
31
32
33
Next Obligation. intros; apply agree_valid_0. Qed.
Next Obligation.
  intros c n ?; apply (chain_cauchy c n (S n)), agree_valid_S; auto.
Qed.
34
Definition agree_cofe_mixin : CofeMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
37
38
39
40
41
42
43
Proof.
  split.
  * intros x y; split.
    + by intros Hxy n; split; intros; apply Hxy.
    + by intros Hxy; split; intros; apply Hxy with n.
  * split.
    + by split.
    + by intros x y Hxy; split; intros; symmetry; apply Hxy; auto; apply Hxy.
    + intros x y z Hxy Hyz; split; intros n'; intros.
Robbert Krebbers's avatar
Robbert Krebbers committed
44
      - transitivity (agree_is_valid y n'). by apply Hxy. by apply Hyz.
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
47
48
49
50
      - transitivity (y n'). by apply Hxy. by apply Hyz, Hxy.
  * intros n x y Hxy; split; intros; apply Hxy; auto.
  * intros x y; split; intros n'; rewrite Nat.le_0_r; intros ->; [|done].
    by split; intros; apply agree_valid_0.
  * by intros c n; split; intros; apply (chain_cauchy c).
Qed.
51
Canonical Structure agreeC := CofeT agree_cofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
52

53
54
55
56
57
Lemma agree_car_ne (x y : agree A) n : {n} x  x ={n}= y  x n ={n}= y n.
Proof. by intros [??] Hxy; apply Hxy. Qed.
Lemma agree_cauchy (x : agree A) n i : {n} x  i  n  x i ={i}= x n.
Proof. by intros [? Hx]; apply Hx. Qed.

58
Program Instance agree_op : Op (agree A) := λ x y,
Robbert Krebbers's avatar
Robbert Krebbers committed
59
60
  {| agree_car := x;
     agree_is_valid n := agree_is_valid x n  agree_is_valid y n  x ={n}= y |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
61
Next Obligation. by intros; simpl; split_ands; try apply agree_valid_0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
62
Next Obligation. naive_solver eauto using agree_valid_S, dist_S. Qed.
63
64
Instance agree_unit : Unit (agree A) := id.
Instance agree_minus : Minus (agree A) := λ x y, x.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
Instance: Commutative () (@op (agree A) _).
66
Proof. intros x y; split; [naive_solver|by intros n (?&?&Hxy); apply Hxy]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Definition agree_idempotent (x : agree A) : x  x  x.
68
Proof. split; naive_solver. Qed.
69
70
71
72
73
74
Instance:  n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
Proof.
  intros n x y Hxy [? Hx]; split; [by apply Hxy|intros n' ?].
  rewrite -(proj2 Hxy n') 1?(Hx n'); eauto using agree_valid_le.
  by apply dist_le with n; try apply Hxy.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
76
77
78
79
80
81
82
83
Instance:  x : agree A, Proper (dist n ==> dist n) (op x).
Proof.
  intros n x y1 y2 [Hy' Hy]; split; [|done].
  split; intros (?&?&Hxy); repeat (intro || split);
    try apply Hy'; eauto using agree_valid_le.
  * etransitivity; [apply Hxy|apply Hy]; eauto using agree_valid_le.
  * etransitivity; [apply Hxy|symmetry; apply Hy, Hy'];
      eauto using agree_valid_le.
Qed.
84
Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _).
Robbert Krebbers's avatar
Robbert Krebbers committed
85
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(commutative _ _ y2) Hx. Qed.
86
Instance: Proper (() ==> () ==> ()) op := ne_proper_2 _.
87
88
89
90
91
92
Instance: Associative () (@op (agree A) _).
Proof.
  intros x y z; split; simpl; intuition;
    repeat match goal with H : agree_is_valid _ _ |- _ => clear H end;
    by cofe_subst; rewrite !agree_idempotent.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
95
Lemma agree_includedN (x y : agree A) n : x {n} y  y ={n}= x  y.
Proof.
  split; [|by intros ?; exists y].
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  by intros [z Hz]; rewrite Hz (associative _) agree_idempotent.
Robbert Krebbers's avatar
Robbert Krebbers committed
97
Qed.
98
Definition agree_cmra_mixin : CMRAMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
99
100
101
Proof.
  split; try (apply _ || done).
  * by intros n x1 x2 Hx y1 y2 Hy.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
103
104
  * intros x; split; [apply agree_valid_0|].
    by intros n'; rewrite Nat.le_0_r; intros ->.
  * intros n x [? Hx]; split; [by apply agree_valid_S|intros n' ?].
Robbert Krebbers's avatar
Robbert Krebbers committed
105
106
    rewrite (Hx n'); last auto.
    symmetry; apply dist_le with n; try apply Hx; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
  * intros x; apply agree_idempotent.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
  * by intros x y n [(?&?&?) ?].
Robbert Krebbers's avatar
Robbert Krebbers committed
109
  * by intros x y n; rewrite agree_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
Qed.
111
112
113
114
115
116
117
Lemma agree_op_inv (x1 x2 : agree A) n : {n} (x1  x2)  x1 ={n}= x2.
Proof. intros Hxy; apply Hxy. Qed.
Lemma agree_valid_includedN (x y : agree A) n : {n} y  x {n} y  x ={n}= y.
Proof.
  move=> Hval [z Hy]; move: Hval; rewrite Hy.
  by move=> /agree_op_inv->; rewrite agree_idempotent.
Qed.
118
Definition agree_cmra_extend_mixin : CMRAExtendMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
119
Proof.
120
  intros n x y1 y2 Hval Hx; exists (x,x); simpl; split.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
  * by rewrite agree_idempotent.
122
  * by move: Hval; rewrite Hx; move=> /agree_op_inv->; rewrite agree_idempotent.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
Qed.
124
125
126
Canonical Structure agreeRA : cmraT :=
  CMRAT agree_cofe_mixin agree_cmra_mixin agree_cmra_extend_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
127
128
129
130
131
Program Definition to_agree (x : A) : agree A :=
  {| agree_car n := x; agree_is_valid n := True |}.
Solve Obligations with done.
Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed.
132
133
134
Global Instance to_agree_proper : Proper (() ==> ()) to_agree := ne_proper _.
Global Instance to_agree_inj n : Injective (dist n) (dist n) (to_agree).
Proof. by intros x y [_ Hxy]; apply Hxy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
136
Lemma to_agree_car n (x : agree A) : {n} x  to_agree (x n) ={n}= x.
Proof. intros [??]; split; naive_solver eauto using agree_valid_le. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
137
138
End agree.

139
140
141
Arguments agreeC : clear implicits.
Arguments agreeRA : clear implicits.

142
Program Definition agree_map {A B} (f : A  B) (x : agree A) : agree B :=
143
144
  {| agree_car n := f (x n); agree_is_valid := agree_is_valid x |}.
Solve Obligations with auto using agree_valid_0, agree_valid_S.
145
146
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
Proof. by destruct x. Qed.
147
148
Lemma agree_map_compose {A B C} (f : A  B) (g : B  C) (x : agree A) :
  agree_map (g  f) x = agree_map g (agree_map f x).
149
Proof. done. Qed.
150

Robbert Krebbers's avatar
Robbert Krebbers committed
151
Section agree_map.
152
  Context {A B : cofeT} (f : A  B) `{Hf:  n, Proper (dist n ==> dist n) f}.
153
  Global Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
154
  Proof. by intros x1 x2 Hx; split; simpl; intros; [apply Hx|apply Hf, Hx]. Qed.
155
156
157
158
159
160
  Global Instance agree_map_proper :
    Proper (() ==> ()) (agree_map f) := ne_proper _.
  Lemma agree_map_ext (g : A  B) x :
    ( x, f x  g x)  agree_map f x  agree_map g x.
  Proof. by intros Hfg; split; simpl; intros; rewrite ?Hfg. Qed.
  Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
161
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
    split; [|by intros n x [? Hx]; split; simpl; [|by intros n' ?; rewrite Hx]].
Robbert Krebbers's avatar
Robbert Krebbers committed
163
    intros x y n; rewrite !agree_includedN; intros Hy; rewrite Hy.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
    split; last done; split; simpl; last tauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
    by intros (?&?&Hxy); repeat split; intros;
       try apply Hxy; try apply Hf; eauto using @agree_valid_le.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
168
  Qed.
End agree_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
170
171

Definition agreeRA_map {A B} (f : A -n> B) : agreeRA A -n> agreeRA B :=
  CofeMor (agree_map f : agreeRA A  agreeRA B).
Robbert Krebbers's avatar
Robbert Krebbers committed
172
173
Instance agreeRA_map_ne A B n : Proper (dist n ==> dist n) (@agreeRA_map A B).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
174
  intros f g Hfg x; split; simpl; intros; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
176
  by apply dist_le with n; try apply Hfg.
Qed.