finite.v 11.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
3
From prelude Require Export countable list.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Class Finite A `{ x y : A, Decision (x = y)} := {
  enum : list A;
  NoDup_enum : NoDup enum;
  elem_of_enum x : x  enum
}.
Arguments enum _ {_ _} : clear implicits.
Arguments NoDup_enum _ {_ _} : clear implicits.
Definition card A `{Finite A} := length (enum A).
Program Instance finite_countable `{Finite A} : Countable A := {|
  encode := λ x,
    Pos.of_nat $ S $ from_option 0 $ fst <$> list_find (x =) (enum A);
  decode := λ p, enum A !! pred (Pos.to_nat p)
|}.
Arguments Pos.of_nat _ : simpl never.
Next Obligation.
  intros ?? [xs Hxs HA] x; unfold encode, decode; simpl.
  destruct (list_find_elem_of (x =) xs x) as [[i y] Hi]; auto.
  rewrite Nat2Pos.id by done; simpl; rewrite Hi; simpl.
  destruct (list_find_Some (x =) xs i y); naive_solver.
Qed.
Definition find `{Finite A} P `{ x, Decision (P x)} : option A :=
  list_find P (enum A) = decode_nat  fst.

Lemma encode_lt_card `{finA: Finite A} x : encode_nat x < card A.
Proof.
  destruct finA as [xs Hxs HA]; unfold encode_nat, encode, card; simpl.
  rewrite Nat2Pos.id by done; simpl.
  destruct (list_find _ xs) as [[i y]|] eqn:?; simpl.
33 34
  - destruct (list_find_Some (x =) xs i y); eauto using lookup_lt_Some.
  - destruct xs; simpl. exfalso; eapply not_elem_of_nil, (HA x). lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Qed.
Lemma encode_decode A `{finA: Finite A} i :
  i < card A   x, decode_nat i = Some x  encode_nat x = i.
Proof.
  destruct finA as [xs Hxs HA].
  unfold encode_nat, decode_nat, encode, decode, card; simpl.
  intros Hi. apply lookup_lt_is_Some in Hi. destruct Hi as [x Hx].
  exists x. rewrite !Nat2Pos.id by done; simpl.
  destruct (list_find_elem_of (x =) xs x) as [[j y] Hj]; auto.
  destruct (list_find_Some (x =) xs j y) as [? ->]; auto.
  rewrite Hj; csimpl; eauto using NoDup_lookup.
Qed.
Lemma find_Some `{finA: Finite A} P `{ x, Decision (P x)} x :
  find P = Some x  P x.
Proof.
  destruct finA as [xs Hxs HA]; unfold find, decode_nat, decode; simpl.
51
  intros Hx. destruct (list_find _ _) as [[i y]|] eqn:Hi; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
52 53 54 55 56 57 58 59
  rewrite !Nat2Pos.id in Hx by done.
  destruct (list_find_Some P xs i y); naive_solver.
Qed.
Lemma find_is_Some `{finA: Finite A} P `{ x, Decision (P x)} x :
  P x   y, find P = Some y  P y.
Proof.
  destruct finA as [xs Hxs HA]; unfold find, decode; simpl.
  intros Hx. destruct (list_find_elem_of P xs x) as [[i y] Hi]; auto.
60
  rewrite Hi. destruct (list_find_Some P xs i y); simplify_eq/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
61 62 63 64 65
  exists y. by rewrite !Nat2Pos.id by done.
Qed.

Lemma card_0_inv P `{finA: Finite A} : card A = 0  A  P.
Proof.
66
  intros ? x. destruct finA as [[|??] ??]; simplify_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68 69 70
  by destruct (not_elem_of_nil x).
Qed.
Lemma finite_inhabited A `{finA: Finite A} : 0 < card A  Inhabited A.
Proof.
71
  unfold card; intros. destruct finA as [[|x ?] ??]; simpl in *; [exfalso;lia|].
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73
  constructor; exact x.
Qed.
74 75
Lemma finite_inj_contains `{finA: Finite A} `{finB: Finite B} (f: A  B)
  `{!Inj (=) (=) f} : f <$> enum A `contains` enum B.
Robbert Krebbers's avatar
Robbert Krebbers committed
76 77 78
Proof.
  intros. destruct finA, finB. apply NoDup_contains; auto using NoDup_fmap_2.
Qed.
79 80
Lemma finite_inj_Permutation `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A = card B  f <$> enum A ≡ₚ enum B.
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
Proof.
  intros. apply contains_Permutation_length_eq.
83 84
  - by rewrite fmap_length.
  - by apply finite_inj_contains.
Robbert Krebbers's avatar
Robbert Krebbers committed
85
Qed.
86 87
Lemma finite_inj_surj `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A = card B  Surj (=) f.
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89
Proof.
  intros HAB y. destruct (elem_of_list_fmap_2 f (enum A) y) as (x&?&?); eauto.
90
  rewrite finite_inj_Permutation; auto using elem_of_enum.
Robbert Krebbers's avatar
Robbert Krebbers committed
91 92
Qed.

93 94
Lemma finite_surj A `{Finite A} B `{Finite B} :
  0 < card A  card B   g : B  A, Surj (=) g.
Robbert Krebbers's avatar
Robbert Krebbers committed
95 96 97 98 99 100 101
Proof.
  intros [??]. destruct (finite_inhabited A) as [x']; auto with lia.
  exists (λ y : B, from_option x' (decode_nat (encode_nat y))).
  intros x. destruct (encode_decode B (encode_nat x)) as (y&Hy1&Hy2).
  { pose proof (encode_lt_card x); lia. }
  exists y. by rewrite Hy2, decode_encode_nat.
Qed.
102 103
Lemma finite_inj A `{Finite A} B `{Finite B} :
  card A  card B   f : A  B, Inj (=) (=) f.
Robbert Krebbers's avatar
Robbert Krebbers committed
104 105
Proof.
  split.
106
  - intros. destruct (decide (card A = 0)) as [HA|?].
Robbert Krebbers's avatar
Robbert Krebbers committed
107
    { exists (card_0_inv B HA). intros y. apply (card_0_inv _ HA y). }
108 109
    destruct (finite_surj A B) as (g&?); auto with lia.
    destruct (surj_cancel g) as (f&?). exists f. apply cancel_inj.
110
  - intros [f ?]. unfold card. rewrite <-(fmap_length f).
111
    by apply contains_length, (finite_inj_contains f).
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113
Qed.
Lemma finite_bijective A `{Finite A} B `{Finite B} :
114
  card A = card B   f : A  B, Inj (=) (=) f  Surj (=) f.
Robbert Krebbers's avatar
Robbert Krebbers committed
115 116
Proof.
  split.
117
  - intros; destruct (proj1 (finite_inj A B)) as [f ?]; auto with lia.
118
    exists f; auto using (finite_inj_surj f).
119
  - intros (f&?&?). apply (anti_symm ()); apply finite_inj.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
    + by exists f.
121
    + destruct (surj_cancel f) as (g&?); eauto using cancel_inj.
Robbert Krebbers's avatar
Robbert Krebbers committed
122
Qed.
123 124 125 126 127
Lemma inj_card `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A  card B.
Proof. apply finite_inj. eauto. Qed.
Lemma surj_card `{Finite A} `{Finite B} (f : A  B)
  `{!Surj (=) f} : card B  card A.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
Proof.
129 130
  destruct (surj_cancel f) as (g&?).
  apply inj_card with g, cancel_inj.
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132
Qed.
Lemma bijective_card `{Finite A} `{Finite B} (f : A  B)
133
  `{!Inj (=) (=) f} `{!Surj (=) f} : card A = card B.
Robbert Krebbers's avatar
Robbert Krebbers committed
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
Proof. apply finite_bijective. eauto. Qed.

(** Decidability of quantification over finite types *)
Section forall_exists.
  Context `{Finite A} (P : A  Prop) `{ x, Decision (P x)}.

  Lemma Forall_finite : Forall P (enum A)  ( x, P x).
  Proof. rewrite Forall_forall. intuition auto using elem_of_enum. Qed.
  Lemma Exists_finite : Exists P (enum A)  ( x, P x).
  Proof. rewrite Exists_exists. naive_solver eauto using elem_of_enum. Qed.

  Global Instance forall_dec: Decision ( x, P x).
  Proof.
   refine (cast_if (decide (Forall P (enum A))));
    abstract by rewrite <-Forall_finite.
  Defined.
  Global Instance exists_dec: Decision ( x, P x).
  Proof.
   refine (cast_if (decide (Exists P (enum A))));
    abstract by rewrite <-Exists_finite.
  Defined.
End forall_exists.

(** Instances *)
Section enc_finite.
  Context `{ x y : A, Decision (x = y)}.
  Context (to_nat : A  nat) (of_nat : nat  A) (c : nat).
  Context (of_to_nat :  x, of_nat (to_nat x) = x).
  Context (to_nat_c :  x, to_nat x < c).
  Context (to_of_nat :  i, i < c  to_nat (of_nat i) = i).

  Program Instance enc_finite : Finite A := {| enum := of_nat <$> seq 0 c |}.
  Next Obligation.
    apply NoDup_alt. intros i j x. rewrite !list_lookup_fmap. intros Hi Hj.
    destruct (seq _ _ !! i) as [i'|] eqn:Hi',
169
      (seq _ _ !! j) as [j'|] eqn:Hj'; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172 173 174 175 176 177 178 179 180 181 182
    destruct (lookup_seq_inv _ _ _ _ Hi'), (lookup_seq_inv _ _ _ _ Hj'); subst.
    rewrite <-(to_of_nat i), <-(to_of_nat j) by done. by f_equal.
  Qed.
  Next Obligation.
    intros x. rewrite elem_of_list_fmap. exists (to_nat x).
    split; auto. by apply elem_of_list_lookup_2 with (to_nat x), lookup_seq.
  Qed.
  Lemma enc_finite_card : card A = c.
  Proof. unfold card. simpl. by rewrite fmap_length, seq_length. Qed.
End enc_finite.

Section bijective_finite.
  Context `{Finite A,  x y : B, Decision (x = y)} (f : A  B) (g : B  A).
183
  Context `{!Inj (=) (=) f, !Cancel (=) f g}.
Robbert Krebbers's avatar
Robbert Krebbers committed
184 185 186 187 188 189 190 191 192 193 194 195

  Program Instance bijective_finite: Finite B := {| enum := f <$> enum A |}.
  Next Obligation. apply (NoDup_fmap_2 _), NoDup_enum. Qed.
  Next Obligation.
    intros y. rewrite elem_of_list_fmap. eauto using elem_of_enum.
  Qed.
End bijective_finite.

Program Instance option_finite `{Finite A} : Finite (option A) :=
  {| enum := None :: Some <$> enum A |}.
Next Obligation.
  constructor.
196 197
  - rewrite elem_of_list_fmap. by intros (?&?&?).
  - apply (NoDup_fmap_2 _); auto using NoDup_enum.
Robbert Krebbers's avatar
Robbert Krebbers committed
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
Qed.
Next Obligation.
  intros ??? [x|]; [right|left]; auto.
  apply elem_of_list_fmap. eauto using elem_of_enum.
Qed.
Lemma option_cardinality `{Finite A} : card (option A) = S (card A).
Proof. unfold card. simpl. by rewrite fmap_length. Qed.

Program Instance unit_finite : Finite () := {| enum := [tt] |}.
Next Obligation. apply NoDup_singleton. Qed.
Next Obligation. intros []. by apply elem_of_list_singleton. Qed.
Lemma unit_card : card unit = 1.
Proof. done. Qed.

Program Instance bool_finite : Finite bool := {| enum := [true; false] |}.
Next Obligation.
  constructor. by rewrite elem_of_list_singleton. apply NoDup_singleton.
Qed.
Next Obligation. intros [|]. left. right; left. Qed.
Lemma bool_card : card bool = 2.
Proof. done. Qed.

Program Instance sum_finite `{Finite A, Finite B} : Finite (A + B)%type :=
  {| enum := (inl <$> enum A) ++ (inr <$> enum B) |}.
Next Obligation.
223
  intros. apply NoDup_app; split_and?.
224 225 226
  - apply (NoDup_fmap_2 _). by apply NoDup_enum.
  - intro. rewrite !elem_of_list_fmap. intros (?&?&?) (?&?&?); congruence.
  - apply (NoDup_fmap_2 _). by apply NoDup_enum.
Robbert Krebbers's avatar
Robbert Krebbers committed
227 228 229 230 231 232 233 234 235 236 237 238 239
Qed.
Next Obligation.
  intros ?????? [x|y]; rewrite elem_of_app, !elem_of_list_fmap;
    eauto using @elem_of_enum.
Qed.
Lemma sum_card `{Finite A, Finite B} : card (A + B) = card A + card B.
Proof. unfold card. simpl. by rewrite app_length, !fmap_length. Qed.

Program Instance prod_finite `{Finite A, Finite B} : Finite (A * B)%type :=
  {| enum := foldr (λ x, (pair x <$> enum B ++)) [] (enum A) |}.
Next Obligation.
  intros ??????. induction (NoDup_enum A) as [|x xs Hx Hxs IH]; simpl.
  { constructor. }
240
  apply NoDup_app; split_and?.
241
  - by apply (NoDup_fmap_2 _), NoDup_enum.
242
  - intros [? y]. rewrite elem_of_list_fmap. intros (?&?&?); simplify_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245
    clear IH. induction Hxs as [|x' xs ?? IH]; simpl.
    { rewrite elem_of_nil. tauto. }
    rewrite elem_of_app, elem_of_list_fmap.
246
    intros [(?&?&?)|?]; simplify_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248
    + destruct Hx. by left.
    + destruct IH. by intro; destruct Hx; right. auto.
249
  - done.
Robbert Krebbers's avatar
Robbert Krebbers committed
250 251 252
Qed.
Next Obligation.
  intros ?????? [x y]. induction (elem_of_enum x); simpl.
253 254
  - rewrite elem_of_app, !elem_of_list_fmap. eauto using @elem_of_enum.
  - rewrite elem_of_app; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
Qed.
Lemma prod_card `{Finite A} `{Finite B} : card (A * B) = card A * card B.
Proof.
  unfold card; simpl. induction (enum A); simpl; auto.
  rewrite app_length, fmap_length. auto.
Qed.

Let list_enum {A} (l : list A) :  n, list { l : list A | length l = n } :=
  fix go n :=
  match n with
  | 0 => [[]eq_refl]
  | S n => foldr (λ x, (sig_map (x ::) (λ _ H, f_equal S H) <$> (go n) ++)) [] l
  end.
Program Instance list_finite `{Finite A} n : Finite { l | length l = n } :=
  {| enum := list_enum (enum A) n |}.
Next Obligation.
  intros ????. induction n as [|n IH]; simpl; [apply NoDup_singleton |].
  revert IH. generalize (list_enum (enum A) n). intros l Hl.
  induction (NoDup_enum A) as [|x xs Hx Hxs IH]; simpl; auto; [constructor |].
274
  apply NoDup_app; split_and?.
275 276
  - by apply (NoDup_fmap_2 _).
  - intros [k1 Hk1]. clear Hxs IH. rewrite elem_of_list_fmap.
277
    intros ([k2 Hk2]&?&?) Hxk2; simplify_eq/=. destruct Hx. revert Hxk2.
Robbert Krebbers's avatar
Robbert Krebbers committed
278 279
    induction xs as [|x' xs IH]; simpl in *; [by rewrite elem_of_nil |].
    rewrite elem_of_app, elem_of_list_fmap, elem_of_cons.
280
    intros [([??]&?&?)|?]; simplify_eq/=; auto.
281
  - apply IH.
Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284
Qed.
Next Obligation.
  intros ???? [l Hl]. revert l Hl.
285
  induction n as [|n IH]; intros [|x l] ?; simpl; simplify_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
286 287 288
  { apply elem_of_list_singleton. by apply (sig_eq_pi _). }
  revert IH. generalize (list_enum (enum A) n). intros k Hk.
  induction (elem_of_enum x) as [x xs|x xs]; simpl in *.
289
  - rewrite elem_of_app, elem_of_list_fmap. left. injection Hl. intros Hl'.
Robbert Krebbers's avatar
Robbert Krebbers committed
290
    eexists (lHl'). split. by apply (sig_eq_pi _). done.
291
  - rewrite elem_of_app. eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
292 293 294 295 296 297 298 299
Qed.
Lemma list_card `{Finite A} n : card { l | length l = n } = card A ^ n.
Proof.
  unfold card; simpl. induction n as [|n IH]; simpl; auto.
  rewrite <-IH. clear IH. generalize (list_enum (enum A) n).
  induction (enum A) as [|x xs IH]; intros l; simpl; auto.
  by rewrite app_length, fmap_length, IH.
Qed.