fin_maps.v 15.4 KB
Newer Older
1 2
From algebra Require Export cmra option.
From prelude Require Export gmap.
3
From algebra Require Import functor upred.
4

5 6
Section cofe.
Context `{Countable K} {A : cofeT}.
7
Implicit Types m : gmap K A.
8

9
Instance map_dist : Dist (gmap K A) := λ n m1 m2,
10
   i, m1 !! i {n} m2 !! i.
11
Program Definition map_chain (c : chain (gmap K A))
12
  (k : K) : chain (option A) := {| chain_car n := c n !! k |}.
13 14
Next Obligation. by intros c k n i ?; apply (chain_cauchy c). Qed.
Instance map_compl : Compl (gmap K A) := λ c,
15
  map_imap (λ i _, compl (map_chain c i)) (c 1).
16
Definition map_cofe_mixin : CofeMixin (gmap K A).
17 18
Proof.
  split.
19
  - intros m1 m2; split.
20 21
    + by intros Hm n k; apply equiv_dist.
    + intros Hm k; apply equiv_dist; intros n; apply Hm.
22
  - intros n; split.
23 24
    + by intros m k.
    + by intros m1 m2 ? k.
25
    + by intros m1 m2 m3 ?? k; trans (m2 !! k).
26
  - by intros n m1 m2 ? k; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  - intros n c k; rewrite /compl /map_compl lookup_imap.
28 29
    feed inversion (λ H, chain_cauchy c 0 (S n) H k); simpl; auto with lia.
    by rewrite conv_compl /=; apply reflexive_eq.
30
Qed.
31
Canonical Structure mapC : cofeT := CofeT map_cofe_mixin.
32 33
Global Instance map_discrete : Discrete A  Discrete mapC.
Proof. intros ? m m' ? i. by apply (timeless _). Qed.
34 35 36 37
(* why doesn't this go automatic? *)
Global Instance mapC_leibniz: LeibnizEquiv A  LeibnizEquiv mapC.
Proof. intros; change (LeibnizEquiv (gmap K A)); apply _. Qed.

38
Global Instance lookup_ne n k :
39
  Proper (dist n ==> dist n) (lookup k : gmap K A  option A).
40
Proof. by intros m1 m2. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41 42
Global Instance lookup_proper k :
  Proper (() ==> ()) (lookup k : gmap K A  option A) := _.
43 44 45 46
Global Instance alter_ne f k n :
  Proper (dist n ==> dist n) f  Proper (dist n ==> dist n) (alter f k).
Proof.
  intros ? m m' Hm k'.
47
  by destruct (decide (k = k')); simplify_map_eq; rewrite (Hm k').
48
Qed.
49
Global Instance insert_ne i n :
50
  Proper (dist n ==> dist n ==> dist n) (insert (M:=gmap K A) i).
51
Proof.
52
  intros x y ? m m' ? j; destruct (decide (i = j)); simplify_map_eq;
53 54
    [by constructor|by apply lookup_ne].
Qed.
55
Global Instance singleton_ne i n :
56 57
  Proper (dist n ==> dist n) (singletonM i : A  gmap K A).
Proof. by intros ???; apply insert_ne. Qed.
58
Global Instance delete_ne i n :
59
  Proper (dist n ==> dist n) (delete (M:=gmap K A) i).
60
Proof.
61
  intros m m' ? j; destruct (decide (i = j)); simplify_map_eq;
62 63
    [by constructor|by apply lookup_ne].
Qed.
64

65
Instance map_empty_timeless : Timeless ( : gmap K A).
66 67 68 69
Proof.
  intros m Hm i; specialize (Hm i); rewrite lookup_empty in Hm |- *.
  inversion_clear Hm; constructor.
Qed.
70
Global Instance map_lookup_timeless m i : Timeless m  Timeless (m !! i).
71
Proof.
72
  intros ? [x|] Hx; [|by symmetry; apply: timeless].
73
  assert (m {0} <[i:=x]> m)
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75
    by (by symmetry in Hx; inversion Hx; cofe_subst; rewrite insert_id).
  by rewrite (timeless m (<[i:=x]>m)) // lookup_insert.
76
Qed.
77
Global Instance map_insert_timeless m i x :
78 79
  Timeless x  Timeless m  Timeless (<[i:=x]>m).
Proof.
80
  intros ?? m' Hm j; destruct (decide (i = j)); simplify_map_eq.
81 82
  { by apply: timeless; rewrite -Hm lookup_insert. }
  by apply: timeless; rewrite -Hm lookup_insert_ne.
83
Qed.
84
Global Instance map_singleton_timeless i x :
85
  Timeless x  Timeless ({[ i := x ]} : gmap K A) := _.
86
End cofe.
87

88
Arguments mapC _ {_ _} _.
89 90

(* CMRA *)
91 92
Section cmra.
Context `{Countable K} {A : cmraT}.
93
Implicit Types m : gmap K A.
94 95 96

Instance map_op : Op (gmap K A) := merge op.
Instance map_unit : Unit (gmap K A) := fmap unit.
97
Instance map_valid : Valid (gmap K A) := λ m,  i,  (m !! i).
98
Instance map_validN : ValidN (gmap K A) := λ n m,  i, {n} (m !! i).
99
Instance map_minus : Minus (gmap K A) := merge minus.
100

101
Lemma lookup_op m1 m2 i : (m1  m2) !! i = m1 !! i  m2 !! i.
102
Proof. by apply lookup_merge. Qed.
103
Lemma lookup_minus m1 m2 i : (m1  m2) !! i = m1 !! i  m2 !! i.
104
Proof. by apply lookup_merge. Qed.
105
Lemma lookup_unit m i : unit m !! i = unit (m !! i).
106
Proof. by apply lookup_fmap. Qed.
107

108
Lemma map_included_spec (m1 m2 : gmap K A) : m1  m2   i, m1 !! i  m2 !! i.
109 110
Proof.
  split.
111 112
  - by intros [m Hm]; intros i; exists (m !! i); rewrite -lookup_op Hm.
  - intros Hm; exists (m2  m1); intros i.
113
    by rewrite lookup_op lookup_minus cmra_op_minus'.
114
Qed.
115
Lemma map_includedN_spec (m1 m2 : gmap K A) n :
116 117 118
  m1 {n} m2   i, m1 !! i {n} m2 !! i.
Proof.
  split.
119 120
  - by intros [m Hm]; intros i; exists (m !! i); rewrite -lookup_op Hm.
  - intros Hm; exists (m2  m1); intros i.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
    by rewrite lookup_op lookup_minus cmra_op_minus.
122
Qed.
123

124
Definition map_cmra_mixin : CMRAMixin (gmap K A).
125 126
Proof.
  split.
127 128 129 130
  - by intros n m1 m2 m3 Hm i; rewrite !lookup_op (Hm i).
  - by intros n m1 m2 Hm i; rewrite !lookup_unit (Hm i).
  - by intros n m1 m2 Hm ? i; rewrite -(Hm i).
  - by intros n m1 m1' Hm1 m2 m2' Hm2 i; rewrite !lookup_minus (Hm1 i) (Hm2 i).
131 132 133
  - intros m; split.
    + by intros ? n i; apply cmra_valid_validN.
    + intros Hm i; apply cmra_valid_validN=> n; apply Hm.
134 135 136 137 138 139
  - intros n m Hm i; apply cmra_validN_S, Hm.
  - by intros m1 m2 m3 i; rewrite !lookup_op assoc.
  - by intros m1 m2 i; rewrite !lookup_op comm.
  - by intros m i; rewrite lookup_op !lookup_unit cmra_unit_l.
  - by intros m i; rewrite !lookup_unit cmra_unit_idemp.
  - intros n x y; rewrite !map_includedN_spec; intros Hm i.
140
    by rewrite !lookup_unit; apply cmra_unit_preservingN.
141
  - intros n m1 m2 Hm i; apply cmra_validN_op_l with (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
142
    by rewrite -lookup_op.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  - intros n x y; rewrite map_includedN_spec=> ? i.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
    by rewrite lookup_op lookup_minus cmra_op_minus.
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  - intros n m m1 m2 Hm Hm12.
    assert ( i, m !! i {n} m1 !! i  m2 !! i) as Hm12'
      by (by intros i; rewrite -lookup_op).
    set (f i := cmra_extend n (m !! i) (m1 !! i) (m2 !! i) (Hm i) (Hm12' i)).
    set (f_proj i := proj1_sig (f i)).
    exists (map_imap (λ i _, (f_proj i).1) m, map_imap (λ i _, (f_proj i).2) m);
      repeat split; intros i; rewrite /= ?lookup_op !lookup_imap.
    + destruct (m !! i) as [x|] eqn:Hx; rewrite !Hx /=; [|constructor].
      rewrite -Hx; apply (proj2_sig (f i)).
    + destruct (m !! i) as [x|] eqn:Hx; rewrite /=; [apply (proj2_sig (f i))|].
      pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
      by symmetry; apply option_op_positive_dist_l with (m2 !! i).
    + destruct (m !! i) as [x|] eqn:Hx; simpl; [apply (proj2_sig (f i))|].
      pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
      by symmetry; apply option_op_positive_dist_r with (m1 !! i).
160
Qed.
161
Canonical Structure mapRA : cmraT := CMRAT map_cofe_mixin map_cmra_mixin.
162 163 164
Global Instance map_cmra_identity : CMRAIdentity mapRA.
Proof.
  split.
165
  - by intros i; rewrite lookup_empty.
166 167
  - by intros m i; rewrite /= lookup_op lookup_empty (left_id_L None _).
  - apply map_empty_timeless.
168
Qed.
169 170
Global Instance map_cmra_discrete : CMRADiscrete A  CMRADiscrete mapRA.
Proof. split; [apply _|]. intros m ? i. by apply: cmra_discrete_valid. Qed.
171 172 173

(** Internalized properties *)
Lemma map_equivI {M} m1 m2 : (m1  m2)%I  ( i, m1 !! i  m2 !! i : uPred M)%I.
174
Proof. by uPred.unseal. Qed.
175
Lemma map_validI {M} m : ( m)%I  ( i,  (m !! i) : uPred M)%I.
176
Proof. by uPred.unseal. Qed.
177
End cmra.
178

179 180 181
Arguments mapRA _ {_ _} _.

Section properties.
182
Context `{Countable K} {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
183
Implicit Types m : gmap K A.
184 185
Implicit Types i : K.
Implicit Types a : A.
186

187
Lemma map_lookup_validN n m i x : {n} m  m !! i {n} Some x  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
Proof. by move=> /(_ i) Hm Hi; move:Hm; rewrite Hi. Qed.
189
Lemma map_lookup_valid m i x :  m  m !! i  Some x   x.
190
Proof. move=> Hm Hi. move:(Hm i). by rewrite Hi. Qed.
191
Lemma map_insert_validN n m i x : {n} x  {n} m  {n} <[i:=x]>m.
192
Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_eq. Qed.
193
Lemma map_insert_valid m i x :  x   m   <[i:=x]>m.
194
Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_eq. Qed.
195
Lemma map_singleton_validN n i x : {n} ({[ i := x ]} : gmap K A)  {n} x.
196
Proof.
197
  split; [|by intros; apply map_insert_validN, cmra_empty_validN].
198
  by move=>/(_ i); simplify_map_eq.
199
Qed.
200
Lemma map_singleton_valid i x :  ({[ i := x ]} : gmap K A)   x.
201
Proof. rewrite !cmra_valid_validN. by setoid_rewrite map_singleton_validN. Qed.
202

203
Lemma map_insert_singleton_opN n m i x :
204
  m !! i = None  m !! i {n} Some (unit x)  <[i:=x]> m {n} {[ i := x ]}  m.
205
Proof.
206 207 208 209
  intros Hi j; destruct (decide (i = j)) as [->|];
    [|by rewrite lookup_op lookup_insert_ne // lookup_singleton_ne // left_id].
  rewrite lookup_op lookup_insert lookup_singleton.
  by destruct Hi as [->| ->]; constructor; rewrite ?cmra_unit_r.
210
Qed.
211
Lemma map_insert_singleton_op m i x :
212
  m !! i = None  m !! i  Some (unit x)  <[i:=x]> m  {[ i := x ]}  m.
213
Proof.
214
  rewrite !equiv_dist; naive_solver eauto using map_insert_singleton_opN.
215 216
Qed.

217
Lemma map_unit_singleton (i : K) (x : A) :
218
  unit ({[ i := x ]} : gmap K A) = {[ i := unit x ]}.
219 220
Proof. apply map_fmap_singleton. Qed.
Lemma map_op_singleton (i : K) (x y : A) :
221
  {[ i := x ]}  {[ i := y ]} = ({[ i := x  y ]} : gmap K A).
222
Proof. by apply (merge_singleton _ _ _ x y). Qed.
223

Robbert Krebbers's avatar
Robbert Krebbers committed
224
Lemma singleton_includedN n m i x :
225
  {[ i := x ]} {n} m   y, m !! i {n} Some y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227 228
  (* not m !! i = Some y  x {n} y to deal with n = 0 *)
Proof.
  split.
229
  - move=> [m' /(_ i)]; rewrite lookup_op lookup_singleton=> Hm.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
    destruct (m' !! i) as [y|];
231
      [exists (x  y)|exists x]; eauto using cmra_included_l.
232
  - intros (y&Hi&?); rewrite map_includedN_spec=>j.
233
    destruct (decide (i = j)); simplify_map_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
234 235 236
    + by rewrite Hi; apply Some_Some_includedN, cmra_included_includedN.
    + apply None_includedN.
Qed.
237
Lemma map_dom_op m1 m2 : dom (gset K) (m1  m2)  dom _ m1  dom _ m2.
238
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
239
  apply elem_of_equiv; intros i; rewrite elem_of_union !elem_of_dom.
240 241 242
  unfold is_Some; setoid_rewrite lookup_op.
  destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
243

244
Lemma map_insert_updateP (P : A  Prop) (Q : gmap K A  Prop) m i x :
245
  x ~~>: P  ( y, P y  Q (<[i:=y]>m))  <[i:=x]>m ~~>: Q.
246
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248
  intros Hx%option_updateP' HP n mf Hm.
  destruct (Hx n (mf !! i)) as ([y|]&?&?); try done.
249
  { by generalize (Hm i); rewrite lookup_op; simplify_map_eq. }
250 251
  exists (<[i:=y]> m); split; first by auto.
  intros j; move: (Hm j)=>{Hm}; rewrite !lookup_op=>Hm.
252
  destruct (decide (i = j)); simplify_map_eq/=; auto.
253
Qed.
254
Lemma map_insert_updateP' (P : A  Prop) m i x :
255
  x ~~>: P  <[i:=x]>m ~~>: λ m',  y, m' = <[i:=y]>m  P y.
256
Proof. eauto using map_insert_updateP. Qed.
257
Lemma map_insert_update m i x y : x ~~> y  <[i:=x]>m ~~> <[i:=y]>m.
258
Proof.
259
  rewrite !cmra_update_updateP; eauto using map_insert_updateP with subst.
260 261
Qed.

262
Lemma map_singleton_updateP (P : A  Prop) (Q : gmap K A  Prop) i x :
263
  x ~~>: P  ( y, P y  Q {[ i := y ]})  {[ i := x ]} ~~>: Q.
264 265
Proof. apply map_insert_updateP. Qed.
Lemma map_singleton_updateP' (P : A  Prop) i x :
266
  x ~~>: P  {[ i := x ]} ~~>: λ m,  y, m = {[ i := y ]}  P y.
267
Proof. apply map_insert_updateP'. Qed.
268
Lemma map_singleton_update i (x y : A) : x ~~> y  {[ i := x ]} ~~> {[ i := y ]}.
269
Proof. apply map_insert_update. Qed.
270

271
Lemma map_singleton_updateP_empty `{Empty A, !CMRAIdentity A}
Robbert Krebbers's avatar
Robbert Krebbers committed
272
    (P : A  Prop) (Q : gmap K A  Prop) i :
273
   ~~>: P  ( y, P y  Q {[ i := y ]})   ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
274
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
275 276
  intros Hx HQ n gf Hg.
  destruct (Hx n (from_option  (gf !! i))) as (y&?&Hy).
Robbert Krebbers's avatar
Robbert Krebbers committed
277
  { move:(Hg i). rewrite !left_id.
278
    case _: (gf !! i); simpl; auto using cmra_empty_validN. }
279
  exists {[ i := y ]}; split; first by auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
280 281 282 283 284
  intros i'; destruct (decide (i' = i)) as [->|].
  - rewrite lookup_op lookup_singleton.
    move:Hy; case _: (gf !! i); first done.
    by rewrite right_id.
  - move:(Hg i'). by rewrite !lookup_op lookup_singleton_ne // !left_id.
285
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
286
Lemma map_singleton_updateP_empty' `{Empty A, !CMRAIdentity A} (P: A  Prop) i :
287
   ~~>: P   ~~>: λ m,  y, m = {[ i := y ]}  P y.
288 289
Proof. eauto using map_singleton_updateP_empty. Qed.

290
Section freshness.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
292 293
Lemma map_updateP_alloc_strong (Q : gmap K A  Prop) (I : gset K) m x :
   x  ( i, m !! i = None  i  I  Q (<[i:=x]>m))  m ~~>: Q.
294
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
295
  intros ? HQ n mf Hm. set (i := fresh (I  dom (gset K) (m  mf))).
296 297
  assert (i  I  i  dom (gset K) m  i  dom (gset K) mf) as [?[??]].
  { rewrite -not_elem_of_union -map_dom_op -not_elem_of_union; apply is_fresh. }
298 299 300 301 302
  exists (<[i:=x]>m); split.
  { by apply HQ; last done; apply not_elem_of_dom. }
  rewrite map_insert_singleton_opN; last by left; apply not_elem_of_dom.
  rewrite -assoc -map_insert_singleton_opN;
    last by left; apply not_elem_of_dom; rewrite map_dom_op not_elem_of_union.
303
  by apply map_insert_validN; [apply cmra_valid_validN|].
304
Qed.
305 306 307 308 309 310
Lemma map_updateP_alloc (Q : gmap K A  Prop) m x :
   x  ( i, m !! i = None  Q (<[i:=x]>m))  m ~~>: Q.
Proof. move=>??. eapply map_updateP_alloc_strong with (I:=); by eauto. Qed.
Lemma map_updateP_alloc_strong' m x (I : gset K) :
   x  m ~~>: λ m',  i, i  I  m' = <[i:=x]>m  m !! i = None.
Proof. eauto using map_updateP_alloc_strong. Qed.
311
Lemma map_updateP_alloc' m x :
312
   x  m ~~>: λ m',  i, m' = <[i:=x]>m  m !! i = None.
313
Proof. eauto using map_updateP_alloc. Qed.
314 315
End freshness.

316 317 318 319 320 321
(* Allocation is a local update: Just use composition with a singleton map. *)
(* Deallocation is *not* a local update. The trouble is that if we
   own {[ i  x ]}, then the frame could always own "unit x", and prevent
   deallocation. *)

(* Applying a local update at a position we own is a local update. *)
322 323
Global Instance map_alter_update `{!LocalUpdate Lv L} i :
  LocalUpdate (λ m,  x, m !! i = Some x  Lv x) (alter L i).
324
Proof.
325 326 327 328
  split; first apply _.
  intros n m1 m2 (x&Hix&?) Hm j; destruct (decide (i = j)) as [->|].
  - rewrite lookup_alter !lookup_op lookup_alter Hix /=.
    move: (Hm j); rewrite lookup_op Hix.
329
    case: (m2 !! j)=>[y|] //=; constructor. by apply (local_updateN L).
330
  - by rewrite lookup_op !lookup_alter_ne // lookup_op.
331
Qed.
332 333
End properties.

334
(** Functor *)
335 336 337 338 339 340 341
Instance map_fmap_ne `{Countable K} {A B : cofeT} (f : A  B) n :
  Proper (dist n ==> dist n) f  Proper (dist n ==>dist n) (fmap (M:=gmap K) f).
Proof. by intros ? m m' Hm k; rewrite !lookup_fmap; apply option_fmap_ne. Qed.
Instance map_fmap_cmra_monotone `{Countable K} {A B : cmraT} (f : A  B)
  `{!CMRAMonotone f} : CMRAMonotone (fmap f : gmap K A  gmap K B).
Proof.
  split.
342
  - intros m1 m2 n; rewrite !map_includedN_spec; intros Hm i.
343
    by rewrite !lookup_fmap; apply: includedN_preserving.
344
  - by intros n m ? i; rewrite lookup_fmap; apply validN_preserving.
345
Qed.
346 347 348 349 350 351 352 353
Definition mapC_map `{Countable K} {A B} (f: A -n> B) : mapC K A -n> mapC K B :=
  CofeMor (fmap f : mapC K A  mapC K B).
Instance mapC_map_ne `{Countable K} {A B} n :
  Proper (dist n ==> dist n) (@mapC_map K _ _ A B).
Proof.
  intros f g Hf m k; rewrite /= !lookup_fmap.
  destruct (_ !! k) eqn:?; simpl; constructor; apply Hf.
Qed.
Ralf Jung's avatar
Ralf Jung committed
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

Program Definition mapF K `{Countable K} (Σ : iFunctor) : iFunctor := {|
  ifunctor_car := mapRA K  Σ; ifunctor_map A B := mapC_map  ifunctor_map Σ
|}.
Next Obligation.
  by intros K ?? Σ A B n f g Hfg; apply mapC_map_ne, ifunctor_map_ne.
Qed.
Next Obligation.
  intros K ?? Σ A x. rewrite /= -{2}(map_fmap_id x).
  apply map_fmap_setoid_ext=> ? y _; apply ifunctor_map_id.
Qed.
Next Obligation.
  intros K ?? Σ A B C f g x. rewrite /= -map_fmap_compose.
  apply map_fmap_setoid_ext=> ? y _; apply ifunctor_map_compose.
Qed.