heap.v 13.1 KB
Newer Older
1
2
From heap_lang Require Export derived.
From program_logic Require Import ownership auth.
Ralf Jung's avatar
Ralf Jung committed
3
From heap_lang Require Import notation.
4
5
6
7
8
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
   a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
   predicates over finmaps instead of just ownP. *)

9
Definition heapRA := mapRA loc (exclRA (leibnizC val)).
10

11
12
13
Class HeapInG Σ (i : gid) := heap_inG :> InG heap_lang Σ i (authRA heapRA).
Instance heap_inG_auth `{HeapInG Σ i} : AuthInG heap_lang Σ i heapRA.
Proof. split; apply _. Qed.
14

15
16
Definition to_heap : state  heapRA := fmap Excl.
Definition from_heap : heapRA  state := omap (maybe Excl).
17

18
19
20
21
22
23
24
25
26
27
28
(* TODO: Do we want to expose heap ownership based on the state, or the heapRA?
   The former does not expose the annoying "Excl", so for now I am going for
   that. We should be able to derive the lemmas we want for this, too. *)
Definition heap_own {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (σ : state) : iPropG heap_lang Σ := auth_own i γ (to_heap σ).
Definition heap_mapsto {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (l : loc) (v : val) : iPropG heap_lang Σ := heap_own i γ {[ l  v ]}.
Definition heap_inv {Σ} (i : gid) `{HeapInG Σ i}
  (h : heapRA) : iPropG heap_lang Σ := ownP (from_heap h).
Definition heap_ctx {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (N : namespace) : iPropG heap_lang Σ := auth_ctx i γ N (heap_inv i).
29

30
31
32
33
34
35
36
Section heap.
  Context {Σ : iFunctorG} (HeapI : gid) `{!HeapInG Σ HeapI}.
  Implicit Types N : namespace.
  Implicit Types P : iPropG heap_lang Σ.
  Implicit Types σ : state.
  Implicit Types h g : heapRA.
  Implicit Types γ : gname.
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
  Lemma from_to_heap σ : from_heap (to_heap σ) = σ.
39
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
42
43
44
45
46
    apply map_eq=>l. rewrite lookup_omap lookup_fmap. by case (σ !! l).
  Qed.
  Lemma to_heap_valid σ :  to_heap σ.
  Proof. intros n l. rewrite lookup_fmap. by case (σ !! l). Qed.
  Hint Resolve to_heap_valid.

  Global Instance heap_inv_proper : Proper (() ==> ()) (heap_inv HeapI).
47
  Proof. intros h1 h2. by fold_leibniz=> ->. Qed.
48
49

  Lemma heap_own_op γ σ1 σ2 :
50
51
    (heap_own HeapI γ σ1  heap_own HeapI γ σ2)%I
     ( (σ1 ⊥ₘ σ2)  heap_own HeapI γ (σ1  σ2))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
  Proof.
 (* TODO. *)
54
55
56
57
  Abort.

  Lemma heap_own_mapsto γ σ l v :
    (* TODO: Is this the best way to express "l ∉ dom σ"? *)
58
59
    (heap_own HeapI γ σ  heap_mapsto HeapI γ l v)%I
     ( (σ !! l = None)  heap_own HeapI γ (<[l:=v]>σ))%I.
60
61
62
  Proof. (* TODO. *)
  Abort.

63
  (* TODO: Do we want equivalence to a big sum? *)
64

65
66
  Lemma heap_alloc N σ :
    ownP σ  pvs N N ( γ, heap_ctx HeapI γ N  heap_own HeapI γ σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
67
  Proof. by rewrite -{1}[σ]from_to_heap -(auth_alloc _ N). Qed.
68

Ralf Jung's avatar
Ralf Jung committed
69
70
  (* TODO: Clearly, this is not the right way to obtain these properties about
     fin_maps. This is horrible. *)
Ralf Jung's avatar
Ralf Jung committed
71
72
73
74
75
76
77
  Lemma wp_alloc_heap N E γ σ e v P Q :
    nclose N  E   to_val e = Some v 
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ 
          ( l, σ !! l = None  heap_own HeapI γ (<[l:=v]>σ) - Q (LocV l))) 
    P  wp E (Alloc e) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    rewrite /heap_ctx /heap_own. intros HN Hval Hctx HP.
    set (LU (l : loc) := local_update_op (A:=heapRA) ({[ l  Excl v ]})).
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) _ (LU := LU)); simpl.
    { by eauto. } { by eauto. } { by eauto. }
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_alloc_pst; first (apply sep_mono; first done); try eassumption.
    apply later_mono, forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l.
    rewrite -(exist_intro l) !left_id. rewrite always_and_sep_l -assoc.
    apply const_elim_sep_l=>Hfresh.
    assert (σ !! l = None) as Hfresh_σ.
    { move: Hfresh (Hv 0%nat l). rewrite /from_heap /to_heap lookup_omap.
      rewrite lookup_op !lookup_fmap.
      case _:(σ !! l)=>[v'|]/=; case _:(hf !! l)=>[[?||]|]/=; done. }
    rewrite const_equiv // const_equiv; last first.
    { move=>n l'. move:(Hv n l') Hfresh.
      rewrite /from_heap /to_heap !lookup_omap !lookup_op !lookup_fmap !Hfresh_σ /=.
      destruct (decide (l=l')).
      - subst l'. rewrite lookup_singleton !Hfresh_σ.
        case _:(hf !! l)=>[[?||]|]/=; done.
      - rewrite lookup_singleton_ne //.
        case _:(σ !! l')=>[?|]/=; case _:(hf !! l')=>[[?||]|]/=; done. }
    rewrite !left_id -later_intro.
    assert ({[l  Excl v]}  to_heap σ = to_heap (<[l:=v]> σ)) as EQ.
    { apply: map_eq=>l'. rewrite lookup_op !lookup_fmap.
      destruct (decide (l=l')); simplify_map_equality.
      - rewrite lookup_insert. done.
      - rewrite !lookup_insert_ne // lookup_empty left_id. done. }
    rewrite EQ. apply sep_mono; last done. f_equiv. apply: map_eq=>l'. 
    move:(Hv 0%nat l') Hfresh. destruct (decide (l=l')); simplify_map_equality.
    - rewrite lookup_insert !lookup_omap !lookup_op !lookup_fmap lookup_insert.
      case _:(σ !! l')=>[?|]/=; case _:(hf !! l')=>[[?||]|]/=; done.
    - rewrite lookup_insert_ne // !lookup_omap !lookup_op !lookup_fmap lookup_insert_ne //.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
114

Ralf Jung's avatar
Ralf Jung committed
115
116
117
118
119
120
121
122
123
  Lemma wp_alloc N E γ e v P Q :
    nclose N  E   to_val e = Some v 
    P  heap_ctx HeapI γ N 
    P  ( ( l, heap_mapsto HeapI γ l v - Q (LocV l))) 
    P  wp E (Alloc e) Q.
  Proof.
    intros HN ? ? HP. eapply wp_alloc_heap with (σ:=); try eassumption.
    rewrite HP. rewrite left_id.

124
  Lemma wp_load_heap N E γ σ l v P Q :
125
    σ !! l = Some v 
Ralf Jung's avatar
Ralf Jung committed
126
    nclose N  E 
127
128
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ σ - Q v)) 
129
130
    P  wp E (Load (Loc l)) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
131
    rewrite /heap_ctx /heap_own. intros Hl HN Hctx HP.
132
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), id)); simpl; eauto.
133
134
135
136
137
138
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_load_pst; first (apply sep_mono; first done); last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
Ralf Jung's avatar
Ralf Jung committed
139
      case _:(hf !! l)=>[[?||]|]; by auto. }
140
141
    apply later_mono, wand_intro_l.
    rewrite -(exist_intro ()) left_id const_equiv // left_id.
142
143
144
    by rewrite -later_intro.
  Qed.

145
  Lemma wp_load N E γ l v P Q :
Ralf Jung's avatar
Ralf Jung committed
146
    nclose N  E 
147
148
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v   (heap_mapsto HeapI γ l v - Q v)) 
Ralf Jung's avatar
Ralf Jung committed
149
150
    P  wp E (Load (Loc l)) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
151
    intros HN. rewrite /heap_mapsto. apply wp_load_heap; last done.
Ralf Jung's avatar
Ralf Jung committed
152
153
    by simplify_map_equality.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
154

Ralf Jung's avatar
Ralf Jung committed
155
156
157
  Lemma wp_store_heap N E γ σ l v' e v P Q :
    σ !! l = Some v'  to_val e = Some v  
    nclose N  E 
Ralf Jung's avatar
Ralf Jung committed
158
159
160
161
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ (<[l:=v]>σ) - Q (LitV LitUnit))) 
    P  wp E (Store (Loc l) e) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
162
    rewrite /heap_ctx /heap_own. intros Hl Hval HN Hctx HP.
163
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), alter (λ _, Excl v) l)); simpl; eauto.
Ralf Jung's avatar
Ralf Jung committed
164
165
166
167
168
169
170
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_store_pst; first (apply sep_mono; first done); try eassumption; last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
      case _:(hf !! l)=>[[?||]|]; by auto. }
171
172
    apply later_mono, wand_intro_l.
    rewrite -(exist_intro ()) const_equiv //; last first.
Ralf Jung's avatar
Ralf Jung committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    (* TODO I think there are some general fin_map lemmas hiding in here. *)
    { split.
      - exists (Excl v'). by rewrite lookup_fmap Hl.
      - move=>n l'. move: (Hv n l'). rewrite !lookup_op.
        destruct (decide (l=l')); simplify_map_equality.
        + rewrite lookup_alter lookup_fmap Hl /=. case (hf !! l')=>[[?||]|]; by auto.
        + rewrite lookup_alter_ne //. }
    rewrite left_id -later_intro.
    assert (alter (λ _ : excl val, Excl v) l (to_heap σ) = to_heap (<[l:=v]> σ)) as EQ.
    { apply: map_eq=>l'. destruct (decide (l=l')); simplify_map_equality.
      + by rewrite lookup_alter /to_heap !lookup_fmap lookup_insert Hl /=.
      + rewrite lookup_alter_ne // !lookup_fmap lookup_insert_ne //. }
    rewrite !EQ. apply sep_mono; last done.
    f_equiv. apply: map_eq=>l'. move: (Hv 0%nat l'). destruct (decide (l=l')); simplify_map_equality.
    - rewrite /from_heap /to_heap lookup_insert lookup_omap !lookup_op.
      rewrite !lookup_fmap lookup_insert Hl.
      case (hf !! l')=>[[?||]|]; auto; contradiction.
    - rewrite /from_heap /to_heap lookup_insert_ne // !lookup_omap !lookup_op !lookup_fmap.
      rewrite lookup_insert_ne //.
  Qed.

Ralf Jung's avatar
Ralf Jung committed
194
195
196
  Lemma wp_store N E γ l v' e v P Q :
    to_val e = Some v  
    nclose N  E  
Ralf Jung's avatar
Ralf Jung committed
197
198
199
200
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v'   (heap_mapsto HeapI γ l v - Q (LitV LitUnit))) 
    P  wp E (Store (Loc l) e) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
201
    rewrite /heap_mapsto=>Hval HN Hctx HP. eapply wp_store_heap; try eassumption; last first.
Ralf Jung's avatar
Ralf Jung committed
202
203
204
    - rewrite HP. apply sep_mono; first done. by rewrite insert_singleton.
    - by rewrite lookup_insert.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
205
206
207
208
209
210
211
212
213

  Lemma wp_cas_fail_heap N E γ σ l v' e1 v1 e2 v2 P Q :
    to_val e1 = Some v1  to_val e2 = Some v2  σ !! l = Some v'  v'  v1 
    nclose N  E 
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ σ - Q 'false)) 
    P  wp E (Cas (Loc l) e1 e2) Q.
  Proof.
    rewrite /heap_ctx /heap_own. intros He1 He2 Hl Hne HN Hctx HP.
214
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), id)); simpl; eauto.
Ralf Jung's avatar
Ralf Jung committed
215
216
217
218
219
220
221
222
    { split_ands; eexists; eauto. }
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_cas_fail_pst; first (apply sep_mono; first done); try eassumption; last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
      case _:(hf !! l)=>[[?||]|]; by auto. }
223
224
    apply later_mono, wand_intro_l.
    rewrite -(exist_intro ()) left_id const_equiv // left_id.
Ralf Jung's avatar
Ralf Jung committed
225
226
227
228
229
230
231
232
233
234
235
236
237
    by rewrite -later_intro.
  Qed.

  Lemma wp_cas_fail N E γ l v' e1 v1 e2 v2 P Q :
    to_val e1 = Some v1  to_val e2 = Some v2  v'  v1 
    nclose N  E 
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v'   (heap_mapsto HeapI γ l v' - Q 'false)) 
    P  wp E (Cas (Loc l) e1 e2) Q.
  Proof.
    rewrite /heap_mapsto=>???. eapply wp_cas_fail_heap; try eassumption.
    by simplify_map_equality.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

  Lemma wp_cas_suc_heap N E γ σ l e1 v1 e2 v2 P Q :
    to_val e1 = Some v1  to_val e2 = Some v2  σ !! l = Some v1  
    nclose N  E 
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ (<[l:=v2]>σ) - Q 'true)) 
    P  wp E (Cas (Loc l) e1 e2) Q.
  Proof.
    rewrite /heap_ctx /heap_own. intros Hv1 Hv2 Hl HN Hctx HP.
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), alter (λ _, Excl v2) l)); simpl; eauto.
    { split_ands; eexists; eauto. }
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_cas_suc_pst; first (apply sep_mono; first done); try eassumption; last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
      case _:(hf !! l)=>[[?||]|]; by auto. }
    apply later_mono, wand_intro_l.
    rewrite -(exist_intro ()) const_equiv //; last first.
    (* TODO I think there are some general fin_map lemmas hiding in here. *)
    { split.
      - exists (Excl v1). by rewrite lookup_fmap Hl.
      - move=>n l'. move: (Hv n l'). rewrite !lookup_op.
        destruct (decide (l=l')); simplify_map_equality.
        + rewrite lookup_alter lookup_fmap Hl /=. case (hf !! l')=>[[?||]|]; by auto.
        + rewrite lookup_alter_ne //. }
    rewrite left_id -later_intro.
    assert (alter (λ _ : excl val, Excl v2) l (to_heap σ) = to_heap (<[l:=v2]> σ)) as EQ.
    { apply: map_eq=>l'. destruct (decide (l=l')); simplify_map_equality.
      + by rewrite lookup_alter /to_heap !lookup_fmap lookup_insert Hl /=.
      + rewrite lookup_alter_ne // !lookup_fmap lookup_insert_ne //. }
    rewrite !EQ. apply sep_mono; last done.
    f_equiv. apply: map_eq=>l'. move: (Hv 0%nat l'). destruct (decide (l=l')); simplify_map_equality.
    - rewrite /from_heap /to_heap lookup_insert lookup_omap !lookup_op.
      rewrite !lookup_fmap lookup_insert Hl.
      case (hf !! l')=>[[?||]|]; auto; contradiction.
    - rewrite /from_heap /to_heap lookup_insert_ne // !lookup_omap !lookup_op !lookup_fmap.
      rewrite lookup_insert_ne //.
  Qed.
278
End heap.