barrier.v 25.7 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
From prelude Require Export functions.
2
From algebra Require Export upred_big_op.
3
From program_logic Require Export sts saved_prop.
4
From program_logic Require Import hoare.
5
From heap_lang Require Export derived heap wp_tactics notation.
Ralf Jung's avatar
Ralf Jung committed
6
Import uPred.
7
8
9

Definition newchan := (λ: "", ref '0)%L.
Definition signal := (λ: "x", "x" <- '1)%L.
10
Definition wait := (rec: "wait" "x" :=if: !"x" = '1 then '() else "wait" "x")%L.
11

12
13
14
(** The STS describing the main barrier protocol. Every state has an index-set
    associated with it. These indices are actually [gname], because we use them
    with saved propositions. *)
15
Module barrier_proto.
16
17
  Inductive phase := Low | High.
  Record stateT := State { state_phase : phase; state_I : gset gname }.
18
19
  Inductive token := Change (i : gname) | Send.

20
21
22
  Global Instance stateT_inhabited: Inhabited stateT.
  Proof. split. exact (State Low ). Qed.

23
  Definition change_tokens (I : gset gname) : set token :=
Ralf Jung's avatar
Ralf Jung committed
24
    mkSet (λ t, match t with Change i => i  I | Send => False end).
25

26
27
28
  Inductive trans : relation stateT :=
  | ChangeI p I2 I1 : trans (State p I1) (State p I2)
  | ChangePhase I : trans (State Low I) (State High I).
29

30
31
32
  Definition tok (s : stateT) : set token :=
      change_tokens (state_I s)
     match state_phase s with Low =>  | High => {[ Send ]} end.
33

Robbert Krebbers's avatar
Robbert Krebbers committed
34
  Canonical Structure sts := sts.STS trans tok.
35

36
  (* The set of states containing some particular i *)
37
38
39
40
  Definition i_states (i : gname) : set stateT :=
    mkSet (λ s, i  state_I s).

  Lemma i_states_closed i :
Robbert Krebbers's avatar
Robbert Krebbers committed
41
    sts.closed (i_states i) {[ Change i ]}.
42
43
  Proof.
    split.
Ralf Jung's avatar
Ralf Jung committed
44
    - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI.
45
      destruct p; set_solver.
46
47
48
49
50
    - (* If we do the destruct of the states early, and then inversion
         on the proof of a transition, it doesn't work - we do not obtain
         the equalities we need. So we destruct the states late, because this
         means we can use "destruct" instead of "inversion". *)
      move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep.
Ralf Jung's avatar
Ralf Jung committed
51
      inversion_clear Hstep as [T1 T2 Hdisj Hstep'].
52
53
      inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
      destruct Htrans; last done; move:Hs1 Hdisj Htok.
54
55
      rewrite /= /tok /=. 
      (* TODO: Can this be done better? *)
Ralf Jung's avatar
Ralf Jung committed
56
57
      intros. apply dec_stable. 
      assert (Change i  change_tokens I1) as HI1
58
        by (rewrite mkSet_not_elem_of; set_solver +Hs1).
Ralf Jung's avatar
Ralf Jung committed
59
60
      assert (Change i  change_tokens I2) as HI2.
      { destruct p.
61
62
        - set_solver +Htok Hdisj HI1.
        - set_solver +Htok Hdisj HI1 / discriminate. }
Ralf Jung's avatar
Ralf Jung committed
63
64
      done.
  Qed.
65
66
67
68

  (* The set of low states *)
  Definition low_states : set stateT :=
    mkSet (λ s, if state_phase s is Low then True else False).
69
70

  Lemma low_states_closed : sts.closed low_states {[ Send ]}.
71
72
73
  Proof.
    split.
    - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI.
74
      destruct p; set_solver.
75
76
77
78
79
    - move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep.
      inversion_clear Hstep as [T1 T2 Hdisj Hstep'].
      inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
      destruct Htrans; move:Hs1 Hdisj Htok =>/=;
                                first by destruct p.
80
      rewrite /= /tok /=. intros. set_solver +Hdisj Htok.
81
82
  Qed.

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  (* Proof that we can take the steps we need. *)
  Lemma signal_step I:
    sts.steps (State Low I, {[Send]}) (State High I, ).
  Proof.
    apply rtc_once. constructor; first constructor;
                        rewrite /= /tok /=; set_solver.
  Qed.

  Lemma wait_step i I :
    i  I  sts.steps (State High I, {[ Change i ]}) (State High (I  {[ i ]}), ).
  Proof.
    intros. apply rtc_once.
    constructor; first constructor; rewrite /= /tok /=; [set_solver..|].
    (* TODO this proof is rather annoying. *)
    apply elem_of_equiv=>t. rewrite !elem_of_union.
    rewrite !mkSet_elem_of /change_tokens /=.
99
    destruct t as [j|]; last set_solver.
100
    rewrite elem_of_difference elem_of_singleton.
101
    destruct (decide (i = j)); set_solver.
102
103
104
105
106
107
108
109
110
111
112
  Qed.
    
  Lemma split_step p i i1 i2 I :
    i  I  i1  I  i2  I  i1  i2 
    sts.steps (State p I, {[ Change i ]})
        (State p ({[i1]}  ({[i2]}  (I  {[i]}))), {[ Change i1; Change i2 ]}).
  Proof.
    intros. apply rtc_once.
    constructor; first constructor; rewrite /= /tok /=; first (destruct p; set_solver).
    (* This gets annoying... and I think I can see a pattern with all these proofs. Automatable? *)
    - apply elem_of_equiv=>t. destruct t; last set_solver.
113
      rewrite !mkSet_elem_of. destruct p; set_solver.
114
    - apply elem_of_equiv=>t. destruct t as [j|]; last set_solver.
115
116
117
118
      rewrite !mkSet_elem_of.
      destruct (decide (i1 = j)); first set_solver. 
      destruct (decide (i2 = j)); first set_solver.
      destruct (decide (i = j)); set_solver.
119
120
  Qed.

121
End barrier_proto.
122
123
124
125
126
127
(* I am too lazy to type the full module name all the time. But then
   why did we even put this into a module? Because some of the names 
   are so general.
   What we'd really like here is to import *some* of the names from
   the module into our namespaces. But Coq doesn't seem to support that...?? *)
Import barrier_proto.
128

129
130
131
(** Now we come to the Iris part of the proof. *)
Section proof.
  Context {Σ : iFunctorG} (N : namespace).
Ralf Jung's avatar
Ralf Jung committed
132
  Context `{heapG Σ} (heapN : namespace).
133
134
  Context `{stsG heap_lang Σ sts}.
  Context `{savedPropG heap_lang Σ}.
Ralf Jung's avatar
Ralf Jung committed
135

136
137
138
139
  Local Hint Immediate i_states_closed low_states_closed : sts.
  Local Hint Resolve signal_step wait_step split_step : sts.
  Local Hint Resolve sts.closed_op : sts.

140
141
142
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
Ralf Jung's avatar
Ralf Jung committed
143

144
  Local Notation iProp := (iPropG heap_lang Σ).
145
146

  Definition waiting (P : iProp) (I : gset gname) : iProp :=
147
148
    ( Ψ : gname  iProp, (P - Π★{set I} (λ i, Ψ i)) 
                             Π★{set I} (λ i, saved_prop_own i (Ψ i)))%I.
149
150

  Definition ress (I : gset gname) : iProp :=
151
    (Π★{set I} (λ i,  R, saved_prop_own i R  R))%I.
152

153
154
  Local Notation state_to_val s :=
    (match s with State Low _ => 0 | State High _ => 1 end).
155
  Definition barrier_inv (l : loc) (P : iProp) (s : stateT) : iProp :=
156
    (l  '(state_to_val s) 
157
158
     match s with State Low I' => waiting P I' | State High I' => ress I' end
    )%I.
159
160

  Definition barrier_ctx (γ : gname) (l : loc) (P : iProp) : iProp :=
161
    ( (heapN  N)  heap_ctx heapN  sts_ctx γ N (barrier_inv l P))%I.
162

163
164
  Global Instance barrier_ctx_ne n γ l : Proper (dist n ==> dist n) (barrier_ctx γ l).
  Proof.
165
166
    move=>? ? EQ. rewrite /barrier_ctx. apply sep_ne; first done.
    apply sep_ne; first done. apply sts_ctx_ne.
167
168
169
170
    move=>[p I]. rewrite /barrier_inv. destruct p; last done.
    rewrite /waiting. by setoid_rewrite EQ.
  Qed.

171
  Definition send (l : loc) (P : iProp) : iProp :=
172
    ( γ, barrier_ctx γ l P  sts_ownS γ low_states {[ Send ]})%I.
173

174
175
176
177
178
  Global Instance send_ne n l : Proper (dist n ==> dist n) (send l).
  Proof. (* TODO: This really ought to be doable by an automatic tactic. it is just application of already regostered congruence lemmas. *)
    move=>? ? EQ. rewrite /send. apply exist_ne=>γ. by rewrite EQ.
  Qed.

179
  Definition recv (l : loc) (R : iProp) : iProp :=
180
    ( γ P Q i, barrier_ctx γ l P  sts_ownS γ (i_states i) {[ Change i ]} 
181
182
        saved_prop_own i Q  (Q - R))%I.

183
184
185
186
187
  Global Instance recv_ne n l : Proper (dist n ==> dist n) (recv l).
  Proof.
    move=>? ? EQ. rewrite /send. do 4 apply exist_ne=>?. by rewrite EQ.
  Qed.

Ralf Jung's avatar
Ralf Jung committed
188
189
190
191
192
193
194
195
196
197
  Lemma waiting_split i i1 i2 Q R1 R2 P I :
    i  I  i1  I  i2  I  i1  i2 
    (saved_prop_own i2 R2  saved_prop_own i1 R1  saved_prop_own i Q 
     (Q - R1  R2)  waiting P I)
     waiting P ({[i1]}  ({[i2]}  (I  {[i]}))).
  Proof.
    intros. rewrite /waiting !sep_exist_l. apply exist_elim=>Ψ.
    rewrite -(exist_intro (<[i1:=R1]> (<[i2:=R2]> Ψ))).
    rewrite [(Π★{set _} (λ _, saved_prop_own _ _))%I](big_sepS_delete _ I i) //.
    rewrite !assoc [(_  (_ - _))%I]comm !assoc [(_   _)%I]comm.
Ralf Jung's avatar
Ralf Jung committed
198
    rewrite !assoc [(_  _ i _)%I]comm !assoc [(_  _ i _)%I]comm -!assoc.
199
200
    do 4 (rewrite big_sepS_insert; last set_solver).
    rewrite !fn_lookup_insert fn_lookup_insert_ne // !fn_lookup_insert.
Ralf Jung's avatar
Ralf Jung committed
201
202
203
204
    rewrite 3!assoc. apply sep_mono.
    - rewrite saved_prop_agree. u_strip_later.
      apply wand_intro_l. rewrite [(_  (_ - Π★{set _} _))%I]comm !assoc wand_elim_r.
      rewrite (big_sepS_delete _ I i) //.
205
      rewrite [(_  Π★{set _} _)%I]comm [(_  Π★{set _} _)%I]comm -!assoc.
Ralf Jung's avatar
Ralf Jung committed
206
207
208
209
210
211
      apply sep_mono.
      + apply big_sepS_mono; first done. intros j.
        rewrite elem_of_difference not_elem_of_singleton. intros.
        rewrite fn_lookup_insert_ne; last naive_solver.
        rewrite fn_lookup_insert_ne; last naive_solver.
        done.
212
      + rewrite !assoc.
Ralf Jung's avatar
Ralf Jung committed
213
214
215
        eapply wand_apply_r'; first done.
        apply: (eq_rewrite (Ψ i) Q (λ x, x)%I); last by eauto with I.
        rewrite eq_sym. eauto with I.
216
217
    - rewrite !assoc. apply sep_mono.
      + by rewrite comm.
Ralf Jung's avatar
Ralf Jung committed
218
219
220
221
222
      + apply big_sepS_mono; first done. intros j.
        rewrite elem_of_difference not_elem_of_singleton. intros.
        rewrite fn_lookup_insert_ne; last naive_solver.
        rewrite fn_lookup_insert_ne; last naive_solver.
        done.
Ralf Jung's avatar
Ralf Jung committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
  Qed. 

  Lemma ress_split i i1 i2 Q R1 R2 I :
    i  I  i1  I  i2  I  i1  i2 
    (saved_prop_own i2 R2  saved_prop_own i1 R1  saved_prop_own i Q 
     (Q - R1  R2)  ress I)
     ress ({[i1]}  ({[i2]}  (I  {[i]}))).
  Proof.
    intros. rewrite /ress.
    rewrite [(Π★{set _} _)%I](big_sepS_delete _ I i) // !assoc !sep_exist_l !sep_exist_r.
    apply exist_elim=>R.
    rewrite big_sepS_insert; last set_solver.
    rewrite big_sepS_insert; last set_solver.
    rewrite -(exist_intro R1) -(exist_intro R2) [(_ i2 _  _)%I]comm -!assoc.
    apply sep_mono_r. rewrite !assoc. apply sep_mono_l.
    rewrite [( _  _ i2 _)%I]comm -!assoc. apply sep_mono_r.
    rewrite !assoc [(_  _ i R)%I]comm !assoc saved_prop_agree.
    rewrite [( _  _)%I]comm -!assoc. eapply wand_apply_l.
    { rewrite <-later_wand, <-later_intro. done. }
    { by rewrite later_sep. }
    u_strip_later.
    apply: (eq_rewrite R Q (λ x, x)%I); eauto with I.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
246

247
  Lemma newchan_spec (P : iProp) (Φ : val  iProp) :
248
    heapN  N 
249
    (heap_ctx heapN   l, recv l P  send l P - Φ (LocV l))
250
     || newchan '() {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
251
  Proof.
252
    intros HN. rewrite /newchan. wp_seq.
253
    rewrite -wp_pvs. wp eapply wp_alloc; eauto with I ndisj.
Ralf Jung's avatar
Ralf Jung committed
254
255
256
257
258
259
260
    apply forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l.
    rewrite !assoc. apply pvs_wand_r.
    (* The core of this proof: Allocating the STS and the saved prop. *)
    eapply sep_elim_True_r.
    { by eapply (saved_prop_alloc _ P). }
    rewrite pvs_frame_l. apply pvs_strip_pvs. rewrite sep_exist_l.
    apply exist_elim=>i.
261
    trans (pvs   (heap_ctx heapN   (barrier_inv l P (State Low {[ i ]}))   saved_prop_own i P)).
Ralf Jung's avatar
Ralf Jung committed
262
263
264
265
266
267
    - rewrite -pvs_intro. rewrite [(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
      rewrite {1}[saved_prop_own _ _]always_sep_dup !assoc. apply sep_mono_l.
      rewrite /barrier_inv /waiting -later_intro. apply sep_mono_r.
      rewrite -(exist_intro (const P)) /=. rewrite -[saved_prop_own _ _](left_id True%I ()%I).
      apply sep_mono.
      + rewrite -later_intro. apply wand_intro_l. rewrite right_id.
Ralf Jung's avatar
Ralf Jung committed
268
269
        by rewrite big_sepS_singleton.
      + by rewrite big_sepS_singleton.
Ralf Jung's avatar
Ralf Jung committed
270
271
272
273
    - rewrite (sts_alloc (barrier_inv l P)  N); last by eauto.
      rewrite !pvs_frame_r !pvs_frame_l. 
      rewrite pvs_trans'. apply pvs_strip_pvs. rewrite sep_exist_r sep_exist_l.
      apply exist_elim=>γ.
Ralf Jung's avatar
Ralf Jung committed
274
275
276
277
      (* TODO: The record notation is rather annoying here *)
      rewrite /recv /send. rewrite -(exist_intro γ) -(exist_intro P).
      rewrite -(exist_intro P) -(exist_intro i) -(exist_intro γ).
      (* This is even more annoying than usually, since rewrite sometimes unfolds stuff... *)
Ralf Jung's avatar
Ralf Jung committed
278
      rewrite [barrier_ctx _ _ _]lock !assoc [(_ locked _)%I]comm !assoc -lock.
Ralf Jung's avatar
Ralf Jung committed
279
      rewrite -always_sep_dup.
Ralf Jung's avatar
Ralf Jung committed
280
      rewrite [barrier_ctx _ _ _]lock always_and_sep_l -!assoc assoc -lock.
281
      rewrite -pvs_frame_l. rewrite /barrier_ctx const_equiv // left_id. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
282
283
      rewrite [(saved_prop_own _ _  _)%I]comm !assoc. rewrite -pvs_frame_r.
      apply sep_mono_l.
Ralf Jung's avatar
Ralf Jung committed
284
285
286
      rewrite -assoc [( _  _)%I]comm assoc -pvs_frame_r.
      eapply sep_elim_True_r; last eapply sep_mono_l.
      { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Ralf Jung's avatar
Ralf Jung committed
287
288
      rewrite (sts_own_weaken  _ _ (i_states i  low_states) _ 
                              ({[ Change i ]}  {[ Send ]})).
289
      + apply pvs_mono. rewrite sts_ownS_op; eauto with sts.
290
291
292
293
      + rewrite /= /tok /=  =>t. rewrite !mkSet_elem_of.
        move=>[[?]|?]; set_solver. 
      + eauto with sts.
      + eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
294
  Qed.
Ralf Jung's avatar
Ralf Jung committed
295

296
  Lemma signal_spec l P (Φ : val  iProp) :
297
    (send l P  P  Φ '())  || signal (LocV l) {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
298
  Proof.
299
300
    rewrite /signal /send /barrier_ctx. rewrite sep_exist_r.
    apply exist_elim=>γ. rewrite -!assoc. apply const_elim_sep_l=>?. wp_let.
Ralf Jung's avatar
Ralf Jung committed
301
    (* I think some evars here are better than repeating *everything* *)
302
303
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
304
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
305
306
307
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
    apply const_elim_sep_l=>Hs. destruct p; last done.
    rewrite {1}/barrier_inv =>/={Hs}. rewrite later_sep.
308
309
    eapply wp_store; eauto with I ndisj. 
    rewrite -!assoc. apply sep_mono_r. u_strip_later.
Ralf Jung's avatar
Ralf Jung committed
310
    apply wand_intro_l. rewrite -(exist_intro (State High I)).
311
    rewrite -(exist_intro ). rewrite const_equiv /=; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
312
313
314
315
    rewrite left_id -later_intro {2}/barrier_inv -!assoc. apply sep_mono_r.
    rewrite !assoc [(_  P)%I]comm !assoc -2!assoc.
    apply sep_mono; last first.
    { apply wand_intro_l. eauto with I. }
Ralf Jung's avatar
Ralf Jung committed
316
    (* Now we come to the core of the proof: Updating from waiting to ress. *)
317
    rewrite /waiting /ress sep_exist_l. apply exist_elim=>{Φ} Φ.
Ralf Jung's avatar
Ralf Jung committed
318
    rewrite later_wand {1}(later_intro P) !assoc wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
    rewrite big_sepS_later -big_sepS_sepS. apply big_sepS_mono'=>i.
320
    rewrite -(exist_intro (Φ i)) comm. done.
Ralf Jung's avatar
Ralf Jung committed
321
  Qed.
Ralf Jung's avatar
Ralf Jung committed
322

323
  Lemma wait_spec l P (Φ : val  iProp) :
324
    (recv l P  (P - Φ '()))  || wait (LocV l) {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
325
  Proof.
326
    rename P into R. wp_rec.
Ralf Jung's avatar
Ralf Jung committed
327
328
329
    rewrite {1}/recv /barrier_ctx. rewrite !sep_exist_r.
    apply exist_elim=>γ. rewrite !sep_exist_r. apply exist_elim=>P.
    rewrite !sep_exist_r. apply exist_elim=>Q. rewrite !sep_exist_r.
330
331
    apply exist_elim=>i. rewrite -!assoc. apply const_elim_sep_l=>?.
    wp_focus (! _)%L.
Ralf Jung's avatar
Ralf Jung committed
332
333
334
    (* I think some evars here are better than repeating *everything* *)
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
335
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
336
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
Ralf Jung's avatar
Ralf Jung committed
337
338
339
    apply const_elim_sep_l=>Hs.
    rewrite {1}/barrier_inv =>/=. rewrite later_sep.
    eapply wp_load; eauto with I ndisj.
340
    rewrite -!assoc. apply sep_mono_r. u_strip_later.
Ralf Jung's avatar
Ralf Jung committed
341
342
343
    apply wand_intro_l. destruct p.
    { (* a Low state. The comparison fails, and we recurse. *)
      rewrite -(exist_intro (State Low I)) -(exist_intro {[ Change i ]}).
344
      rewrite [( sts.steps _ _ )%I]const_equiv /=; last by apply rtc_refl.
Ralf Jung's avatar
Ralf Jung committed
345
346
      rewrite left_id -[( barrier_inv _ _ _)%I]later_intro {3}/barrier_inv.
      rewrite -!assoc. apply sep_mono_r, sep_mono_r, wand_intro_l.
347
      wp_op; first done. intros _. wp_if. rewrite !assoc.
348
      rewrite -always_wand_impl always_elim.
Ralf Jung's avatar
Ralf Jung committed
349
      rewrite -{2}pvs_wp. apply pvs_wand_r.
Ralf Jung's avatar
Ralf Jung committed
350
      rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro Q) -(exist_intro i).
351
352
      rewrite !assoc.
      do 3 (rewrite -pvs_frame_r; apply sep_mono; last (try apply later_intro; reflexivity)).
353
354
      rewrite [(_  heap_ctx _)%I]comm -!assoc.
      rewrite const_equiv // left_id -pvs_frame_l. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
355
      rewrite comm -pvs_frame_l. apply sep_mono_r.
356
      apply sts_ownS_weaken; eauto using sts.up_subseteq with sts. }
Ralf Jung's avatar
Ralf Jung committed
357
358
    (* a High state: the comparison succeeds, and we perform a transition and
       return to the client *)
359
    rewrite [(_   (_  _ ))%I]sep_elim_l.
Ralf Jung's avatar
Ralf Jung committed
360
361
    rewrite -(exist_intro (State High (I  {[ i ]}))) -(exist_intro ).
    change (i  I) in Hs.
362
    rewrite const_equiv /=; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
363
364
365
366
367
368
369
    rewrite left_id -[( barrier_inv _ _ _)%I]later_intro {2}/barrier_inv.
    rewrite -!assoc. apply sep_mono_r. rewrite /ress.
    rewrite (big_sepS_delete _ I i) // [(_ ★ Π★{set _} _)%I]comm -!assoc.
    apply sep_mono_r. rewrite !sep_exist_r. apply exist_elim=>Q'.
    apply wand_intro_l. rewrite [(heap_ctx _  _)%I]sep_elim_r.
    rewrite [(sts_own _ _ _  _)%I]sep_elim_r [(sts_ctx _ _ _  _)%I]sep_elim_r.
    rewrite !assoc [(_  saved_prop_own i Q)%I]comm !assoc saved_prop_agree.
370
    wp_op>; last done. intros _. u_strip_later.
371
    wp_if. 
Ralf Jung's avatar
Ralf Jung committed
372
373
374
375
    eapply wand_apply_r; [done..|]. eapply wand_apply_r; [done..|].
    apply: (eq_rewrite Q' Q (λ x, x)%I); last by eauto with I.
    rewrite eq_sym. eauto with I.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
376

Ralf Jung's avatar
Ralf Jung committed
377
  Lemma recv_split l P1 P2 Φ :
378
    (recv l (P1  P2)  (recv l P1  recv l P2 - Φ '()))  || Skip {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
379
  Proof.
Ralf Jung's avatar
Ralf Jung committed
380
381
382
383
    rename P1 into R1. rename P2 into R2.
    rewrite {1}/recv /barrier_ctx. rewrite sep_exist_r.
    apply exist_elim=>γ. rewrite sep_exist_r.  apply exist_elim=>P. 
    rewrite sep_exist_r.  apply exist_elim=>Q. rewrite sep_exist_r.
384
    apply exist_elim=>i. rewrite -!assoc. apply const_elim_sep_l=>?. rewrite -wp_pvs.
Ralf Jung's avatar
Ralf Jung committed
385
386
387
    (* I think some evars here are better than repeating *everything* *)
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
Ralf Jung's avatar
Ralf Jung committed
388
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
389
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
Ralf Jung's avatar
Ralf Jung committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    apply const_elim_sep_l=>Hs. rewrite -wp_pvs. wp_seq.
    eapply sep_elim_True_l.
    { eapply saved_prop_alloc_strong with (P0 := R1) (G := I). }
    rewrite pvs_frame_r. apply pvs_strip_pvs. rewrite sep_exist_r.
    apply exist_elim=>i1. rewrite always_and_sep_l. rewrite -assoc.
    apply const_elim_sep_l=>Hi1. eapply sep_elim_True_l.
    { eapply saved_prop_alloc_strong with (P0 := R2) (G := I  {[ i1 ]}). }
    rewrite pvs_frame_r. apply pvs_mono. rewrite sep_exist_r.
    apply exist_elim=>i2. rewrite always_and_sep_l. rewrite -assoc.
    apply const_elim_sep_l=>Hi2.
    rewrite ->not_elem_of_union, elem_of_singleton in Hi2.
    destruct Hi2 as [Hi2 Hi12]. change (i  I) in Hs. destruct p.
    (* Case I: Low state. *)
    - rewrite -(exist_intro (State Low ({[i1]}  ({[i2]}  (I  {[i]}))))).
      rewrite -(exist_intro ({[Change i1 ]}  {[ Change i2 ]})).
405
      rewrite [( sts.steps _ _)%I]const_equiv; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
406
407
408
409
410
411
      rewrite left_id -later_intro {1 3}/barrier_inv.
      (* FIXME ssreflect rewrite fails if there are evars around. Also, this is very slow because we don't have a proof mode. *)
      rewrite -(waiting_split _ _ _ Q R1 R2); [|done..].
      match goal with | |- _  ?G => rewrite [G]lock end.
      rewrite {1}[saved_prop_own i1 _]always_sep_dup.
      rewrite {1}[saved_prop_own i2 _]always_sep_dup.
Ralf Jung's avatar
Ralf Jung committed
412
413
      rewrite !assoc [(_  _ i1 _)%I]comm.
      rewrite !assoc [(_  _ i _)%I]comm.
Ralf Jung's avatar
Ralf Jung committed
414
415
416
417
418
419
      rewrite !assoc [(_  (l  _))%I]comm.
      rewrite !assoc [(_  (waiting _ _))%I]comm.
      rewrite !assoc [(_  (Q - _))%I]comm -!assoc 5!assoc.
      unlock. apply sep_mono.
      + (* This should really all be handled automatically. *)
        rewrite !assoc [(_  (l  _))%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
420
421
422
        rewrite !assoc [(_  _ i2 _)%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i1 _)%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
423
424
425
426
427
428
429
        done.
      + apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
        rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
        rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
        do 2 rewrite !(assoc ()%I) [(_  sts_ownS _ _ _)%I]comm.
        rewrite -!assoc. rewrite [(sts_ownS _ _ _  _  _)%I]assoc -pvs_frame_r.
        apply sep_mono.
430
        * rewrite -sts_ownS_op; by eauto using sts_own_weaken with sts.
431
432
        * rewrite const_equiv // !left_id.
          rewrite {1}[heap_ctx _]always_sep_dup !assoc [(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
433
434
435
436
437
438
439
          rewrite !assoc ![(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
          rewrite {1}[sts_ctx _ _ _]always_sep_dup !assoc [(_  sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
          rewrite !assoc ![(_  sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
          rewrite comm. apply sep_mono_r. apply sep_intro_True_l.
          { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
          apply sep_intro_True_r; first done.
          { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Ralf Jung's avatar
Ralf Jung committed
440
(* Case II: High state. TODO: Lots of this script is just copy-n-paste of the previous one.
441
442
   Most of that is because the goals are fairly similar in structure, and the proof scripts
   are mostly concerned with manually managaing the structure (assoc, comm, dup) of
Ralf Jung's avatar
Ralf Jung committed
443
444
445
   the context. *)
    - rewrite -(exist_intro (State High ({[i1]}  ({[i2]}  (I  {[i]}))))).
      rewrite -(exist_intro ({[Change i1 ]}  {[ Change i2 ]})).
446
      rewrite const_equiv; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
      rewrite left_id -later_intro {1 3}/barrier_inv.
      rewrite -(ress_split _ _ _ Q R1 R2); [|done..].
      match goal with | |- _  ?G => rewrite [G]lock end.
      rewrite {1}[saved_prop_own i1 _]always_sep_dup.
      rewrite {1}[saved_prop_own i2 _]always_sep_dup.
      rewrite !assoc [(_  _ i1 _)%I]comm.
      rewrite !assoc [(_  _ i _)%I]comm.
      rewrite !assoc [(_  (l  _))%I]comm.
      rewrite !assoc [(_  (ress _))%I]comm.
      rewrite !assoc [(_  (Q - _))%I]comm -!assoc 5!assoc.
      unlock. apply sep_mono.
      + (* This should really all be handled automatically. *)
        rewrite !assoc [(_  (l  _))%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i2 _)%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i1 _)%I]comm -!assoc. apply sep_mono_r.
        rewrite !assoc [(_  _ i _)%I]comm -!assoc. apply sep_mono_r.
        done.
      + apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
        rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
        rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
        do 2 rewrite !(assoc ()%I) [(_  sts_ownS _ _ _)%I]comm.
        rewrite -!assoc. rewrite [(sts_ownS _ _ _  _  _)%I]assoc -pvs_frame_r.
        apply sep_mono.
470
        * rewrite -sts_ownS_op; by eauto using sts_own_weaken with sts.
471
472
        * rewrite const_equiv // !left_id.
          rewrite {1}[heap_ctx _]always_sep_dup !assoc [(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
473
474
475
476
477
478
479
480
          rewrite !assoc ![(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
          rewrite {1}[sts_ctx _ _ _]always_sep_dup !assoc [(_  sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
          rewrite !assoc ![(_  sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
          rewrite comm. apply sep_mono_r. apply sep_intro_True_l.
          { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
          apply sep_intro_True_r; first done.
          { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
  Qed.
Ralf Jung's avatar
Ralf Jung committed
481
482
483
484

  Lemma recv_strengthen l P1 P2 :
    (P1 - P2)  (recv l P1 - recv l P2).
  Proof.
Ralf Jung's avatar
Ralf Jung committed
485
486
487
    apply wand_intro_l. rewrite /recv. rewrite sep_exist_r. apply exist_mono=>γ.
    rewrite sep_exist_r. apply exist_mono=>P. rewrite sep_exist_r.
    apply exist_mono=>Q. rewrite sep_exist_r. apply exist_mono=>i.
488
    rewrite -!assoc. apply sep_mono_r, sep_mono_r, sep_mono_r, sep_mono_r, sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
489
490
491
    rewrite (later_intro (P1 - _)%I) -later_sep. apply later_mono.
    apply wand_intro_l. rewrite !assoc wand_elim_r wand_elim_r. done.
  Qed.
492
493

End proof.
494
495
496
497
498
499
500
501
502
503
504
505
506

Section spec.
  Context {Σ : iFunctorG}.
  Context `{heapG Σ}.
  Context `{stsG heap_lang Σ barrier_proto.sts}.
  Context `{savedPropG heap_lang Σ}.

  Local Notation iProp := (iPropG heap_lang Σ).

  (* TODO: Maybe notation for LocV (and Loc)? *)
  Lemma barrier_spec (heapN N : namespace) :
    heapN  N 
     (recv send : loc -> iProp -n> iProp),
507
508
509
510
      ( P, heap_ctx heapN  ({{ True }} newchan '() {{ λ v,  l, v = LocV l  recv l P  send l P }})) 
      ( l P, {{ send l P  P }} signal (LocV l) {{ λ _, True }}) 
      ( l P, {{ recv l P }} wait (LocV l) {{ λ _, P }}) 
      ( l P Q, {{ recv l (P  Q) }} Skip {{ λ _, recv l P  recv l Q }}) 
511
512
513
      ( l P Q, (P - Q)  (recv l P - recv l Q)).
  Proof.
    intros HN. exists (λ l, CofeMor (recv N heapN l)). exists (λ l, CofeMor (send N heapN l)).
514
    split_and?; cbn.
515
    - intros. apply: always_intro. apply impl_intro_l. rewrite -newchan_spec //.
516
      rewrite comm always_and_sep_r. apply sep_mono_r. apply forall_intro=>l.
517
      apply wand_intro_l. rewrite right_id -(exist_intro l) const_equiv // left_id;
518
      done.
519
520
    - intros. apply ht_alt. rewrite -signal_spec. by rewrite right_id.
    - intros. apply ht_alt. rewrite -wait_spec.
Ralf Jung's avatar
Ralf Jung committed
521
      apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
Ralf Jung's avatar
Ralf Jung committed
522
523
    - intros. apply ht_alt. rewrite -recv_split.
      apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
524
    - intros. apply recv_strengthen.
Ralf Jung's avatar
Ralf Jung committed
525
  Qed.
526
527

End spec.