From eb36249e74f4fefc09f21cf41223b9464cdce68b Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Mon, 23 Apr 2018 19:16:11 +0200 Subject: [PATCH] accessor-style iInv without Hclose --- theories/base_logic/lib/auth.v | 3 +- theories/base_logic/lib/boxes.v | 20 ++--- .../base_logic/lib/cancelable_invariants.v | 24 +++--- theories/base_logic/lib/invariants.v | 9 +-- theories/base_logic/lib/na_invariants.v | 19 ++--- theories/base_logic/lib/sts.v | 3 +- theories/base_logic/lib/viewshifts.v | 3 +- theories/heap_lang/lib/counter.v | 47 ++++++------ theories/heap_lang/lib/increment.v | 5 +- theories/heap_lang/lib/spawn.v | 14 ++-- theories/heap_lang/lib/spin_lock.v | 15 ++-- theories/heap_lang/lib/ticket_lock.v | 44 +++++------ theories/program_logic/weakestpre.v | 22 ++++++ theories/proofmode/class_instances_sbi.v | 14 +++- theories/proofmode/classes.v | 31 ++++++-- theories/proofmode/coq_tactics.v | 18 ++++- theories/proofmode/ltac_tactics.v | 63 ++++++++-------- theories/proofmode/monpred.v | 10 +-- theories/tests/one_shot.v | 18 ++--- theories/tests/proofmode_iris.v | 73 +++++++------------ 20 files changed, 248 insertions(+), 207 deletions(-) diff --git a/theories/base_logic/lib/auth.v b/theories/base_logic/lib/auth.v index bd849ac1f..f0a8c87e0 100644 --- a/theories/base_logic/lib/auth.v +++ b/theories/base_logic/lib/auth.v @@ -144,7 +144,8 @@ Section auth. ⌜a ≼ f t⌠∗ â–· φ t ∗ ∀ u b, ⌜(f t, a) ~l~> (f u, b)⌠∗ â–· φ u ={E∖↑N,E}=∗ auth_own γ b. Proof using Type*. - iIntros (?) "[#? Hγf]". rewrite /auth_ctx. iInv N as "Hinv" "Hclose". + iIntros (?) "[Hinv Hγf]". rewrite /auth_ctx. + iMod (inv_open with "Hinv") as "[Hinv Hclose]"; first done. (* The following is essentially a very trivial composition of the accessors [auth_acc] and [inv_open] -- but since we don't have any good support for that currently, this gets more tedious than it should, with us having diff --git a/theories/base_logic/lib/boxes.v b/theories/base_logic/lib/boxes.v index 82739945d..ea423840b 100644 --- a/theories/base_logic/lib/boxes.v +++ b/theories/base_logic/lib/boxes.v @@ -130,11 +130,11 @@ Lemma slice_delete_empty E q f P Q γ : Proof. iIntros (??) "[#HγQ Hinv] H". iDestruct "H" as (Φ) "[#HeqP Hf]". iExists ([∗ map] γ'↦_ ∈ delete γ f, Φ γ')%I. - iInv N as (b) "[>Hγ _]" "Hclose". + iInv N as (b) "[>Hγ _]". iDestruct (big_opM_delete _ f _ false with "Hf") as "[[>Hγ' #[HγΦ ?]] ?]"; first done. iDestruct (box_own_auth_agree γ b false with "[-]") as %->; first by iFrame. - iMod ("Hclose" with "[Hγ]"); first iExists false; eauto. + iModIntro. iSplitL "Hγ"; first iExists false; eauto. iModIntro. iNext. iSplit. - iDestruct (box_own_agree γ Q (Φ γ) with "[#]") as "HeqQ"; first by eauto. iNext. iRewrite "HeqP". iRewrite "HeqQ". by rewrite -big_opM_delete. @@ -147,11 +147,11 @@ Lemma slice_fill E q f γ P Q : slice N γ Q -∗ â–· Q -∗ â–·?q box N f P ={E}=∗ â–·?q box N (<[γ:=true]> f) P. Proof. iIntros (??) "#[HγQ Hinv] HQ H"; iDestruct "H" as (Φ) "[#HeqP Hf]". - iInv N as (b') "[>Hγ _]" "Hclose". + iInv N as (b') "[>Hγ _]". iDestruct (big_opM_delete _ f _ false with "Hf") as "[[>Hγ' #[HγΦ Hinv']] ?]"; first done. iMod (box_own_auth_update γ b' false true with "[$Hγ $Hγ']") as "[Hγ Hγ']". - iMod ("Hclose" with "[Hγ HQ]"); first (iNext; iExists true; by iFrame). + iModIntro. iSplitL "Hγ HQ"; first (iNext; iExists true; by iFrame). iModIntro; iNext; iExists Φ; iSplit. - by rewrite big_opM_insert_override. - rewrite -insert_delete big_opM_insert ?lookup_delete //. @@ -164,13 +164,13 @@ Lemma slice_empty E q f P Q γ : slice N γ Q -∗ â–·?q box N f P ={E}=∗ â–· Q ∗ â–·?q box N (<[γ:=false]> f) P. Proof. iIntros (??) "#[HγQ Hinv] H"; iDestruct "H" as (Φ) "[#HeqP Hf]". - iInv N as (b) "[>Hγ HQ]" "Hclose". + iInv N as (b) "[>Hγ HQ]". iDestruct (big_opM_delete _ f with "Hf") as "[[>Hγ' #[HγΦ Hinv']] ?]"; first done. iDestruct (box_own_auth_agree γ b true with "[-]") as %->; first by iFrame. iFrame "HQ". iMod (box_own_auth_update γ with "[$Hγ $Hγ']") as "[Hγ Hγ']". - iMod ("Hclose" with "[Hγ]"); first (iNext; iExists false; by repeat iSplit). + iModIntro. iSplitL "Hγ"; first (iNext; iExists false; by repeat iSplit). iModIntro; iNext; iExists Φ; iSplit. - by rewrite big_opM_insert_override. - rewrite -insert_delete big_opM_insert ?lookup_delete //. @@ -213,9 +213,9 @@ Proof. rewrite -big_opM_opM big_opM_fmap; iApply (fupd_big_sepM _ _ f). iApply (@big_sepM_impl with "Hf"). iIntros "!#" (γ b' ?) "[(Hγ' & #$ & #$) HΦ]". - iInv N as (b) "[>Hγ _]" "Hclose". + iInv N as (b) "[>Hγ _]". iMod (box_own_auth_update γ with "[Hγ Hγ']") as "[Hγ $]"; first by iFrame. - iApply "Hclose". iNext; iExists true. by iFrame. + iModIntro. iSplitL; last done. iNext; iExists true. iFrame. Qed. Lemma box_empty E f P : @@ -230,10 +230,10 @@ Proof. { rewrite -big_opM_opM -fupd_big_sepM. iApply (@big_sepM_impl with "[$Hf]"). iIntros "!#" (γ b ?) "(Hγ' & #HγΦ & #Hinv)". assert (true = b) as <- by eauto. - iInv N as (b) "[>Hγ HΦ]" "Hclose". + iInv N as (b) "[>Hγ HΦ]". iDestruct (box_own_auth_agree γ b true with "[-]") as %->; first by iFrame. iMod (box_own_auth_update γ true true false with "[$Hγ $Hγ']") as "[Hγ $]". - iMod ("Hclose" with "[Hγ]"); first (iNext; iExists false; iFrame; eauto). + iModIntro. iSplitL "Hγ"; first (iNext; iExists false; iFrame; eauto). iFrame "HγΦ Hinv". by iApply "HΦ". } iModIntro; iSplitL "HΦ". - rewrite internal_eq_iff later_iff big_sepM_later. by iApply "HeqP". diff --git a/theories/base_logic/lib/cancelable_invariants.v b/theories/base_logic/lib/cancelable_invariants.v index 762d6e22e..2ce16d7f6 100644 --- a/theories/base_logic/lib/cancelable_invariants.v +++ b/theories/base_logic/lib/cancelable_invariants.v @@ -73,9 +73,8 @@ Section proofs. Lemma cinv_cancel E N γ P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ 1 ={E}=∗ â–· P. Proof. iIntros (?) "#Hinv Hγ". iDestruct "Hinv" as (P') "[#HP' Hinv]". - iInv N as "[HP|>Hγ']" "Hclose". - - iMod ("Hclose" with "[Hγ]") as "_"; first by eauto. iModIntro. iNext. - iApply "HP'". done. + iInv N as "[HP|>Hγ']". + - iModIntro. iFrame "Hγ". iModIntro. iApply "HP'". done. - iDestruct (cinv_own_1_l with "Hγ Hγ'") as %[]. Qed. @@ -84,23 +83,22 @@ Section proofs. cinv N γ P -∗ cinv_own γ p ={E,E∖↑N}=∗ â–· P ∗ cinv_own γ p ∗ (â–· P ={E∖↑N,E}=∗ True). Proof. iIntros (?) "#Hinv Hγ". iDestruct "Hinv" as (P') "[#HP' Hinv]". - iInv N as "[HP | >Hγ']" "Hclose". + iMod (inv_open with "Hinv") as "[[HP | >Hγ'] Hclose]"; first done. - iIntros "!> {$Hγ}". iSplitL "HP". - + iNext. iApply "HP'". done. + + iApply "HP'". done. + iIntros "HP". iApply "Hclose". iLeft. iNext. by iApply "HP'". - iDestruct (cinv_own_1_l with "Hγ' Hγ") as %[]. Qed. Global Instance into_inv_cinv N γ P : IntoInv (cinv N γ P) N. - Global Instance elim_inv_cinv p γ E N P Q Q' : - (∀ R, ElimModal True false false (|={E,E∖↑N}=> R) R Q Q') → - ElimInv (↑N ⊆ E) (cinv N γ P) (cinv_own γ p) - (â–· P ∗ cinv_own γ p) (â–· P ={E∖↑N,E}=∗ True) Q Q'. + + Global Instance elim_inv_cinv E N γ P p Q Q' : + InvOpener E (E∖↑N) (â–· P ∗ cinv_own γ p) (â–· P) None Q Q' → + ElimInv (↑N ⊆ E) (cinv N γ P) (cinv_own γ p) (â–· P ∗ cinv_own γ p) Q Q'. Proof. - rewrite /ElimInv /ElimModal. iIntros (Helim ?) "(#H1&Hown&H2)". - iApply Helim; [done|]; simpl. iSplitR "H2"; [|done]. - iMod (cinv_open E N γ p P with "[#] [Hown]") as "(HP&Hown&Hclose)"; auto. - by iFrame. + rewrite /ElimInv /InvOpener. iIntros (Helim ?) "(#Hinv & Hown & Hcont)". + iApply (Helim with "Hcont"). clear Helim. rewrite -assoc. + iApply (cinv_open with "Hinv"); done. Qed. End proofs. diff --git a/theories/base_logic/lib/invariants.v b/theories/base_logic/lib/invariants.v index 5ec29362d..81def8c6a 100644 --- a/theories/base_logic/lib/invariants.v +++ b/theories/base_logic/lib/invariants.v @@ -110,12 +110,11 @@ Qed. Global Instance into_inv_inv N P : IntoInv (inv N P) N. Global Instance elim_inv_inv E N P Q Q' : - (∀ R, ElimModal True false false (|={E,E∖↑N}=> R) R Q Q') → - ElimInv (↑N ⊆ E) (inv N P) True (â–· P) (â–· P ={E∖↑N,E}=∗ True) Q Q'. + InvOpener E (E∖↑N) (â–· P) (â–· P) None Q Q' → + ElimInv (↑N ⊆ E) (inv N P) True (â–· P) Q Q'. Proof. - rewrite /ElimInv /ElimModal. iIntros (Helim ?) "(#H1&_&H2)". - iApply (Helim with "[H2]"); [done|]; simpl. iSplitR "H2"; [|done]. - iMod (inv_open _ N with "[#]") as "(HP&Hclose)"; auto with iFrame. + rewrite /ElimInv /InvOpener. iIntros (Hopener ?) "(#Hinv & _ & Hcont)". + iApply (Hopener with "Hcont"). iApply inv_open; done. Qed. Lemma inv_open_timeless E N P `{!Timeless P} : diff --git a/theories/base_logic/lib/na_invariants.v b/theories/base_logic/lib/na_invariants.v index c1116ef9c..a1c6d8950 100644 --- a/theories/base_logic/lib/na_invariants.v +++ b/theories/base_logic/lib/na_invariants.v @@ -101,25 +101,26 @@ Section proofs. rewrite [F as X in na_own p X](union_difference_L (↑N) F) //. rewrite [X in (X ∪ _)](union_difference_L {[i]} (↑N)) ?na_own_union; [|set_solver..]. iDestruct "Htoks" as "[[Htoki $] $]". - iInv N as "[[$ >Hdis]|>Htoki2]" "Hclose". + iMod (inv_open with "Hinv") as "[[[$ >Hdis]|>Htoki2] Hclose]"; first done. - iMod ("Hclose" with "[Htoki]") as "_"; first auto. iIntros "!> [HP $]". - iInv N as "[[_ >Hdis2]|>Hitok]" "Hclose". + iInv N as "[[_ >Hdis2]|>Hitok]". + iDestruct (own_valid_2 with "Hdis Hdis2") as %[_ Hval%gset_disj_valid_op]. set_solver. - + iFrame. iApply "Hclose". iNext. iLeft. by iFrame. + + iSplitR "Hitok"; last by iFrame. eauto with iFrame. - iDestruct (na_own_disjoint with "Htoki Htoki2") as %?. set_solver. Qed. Global Instance into_inv_na p N P : IntoInv (na_inv p N P) N. + Global Instance elim_inv_na p F E N P Q Q': - (∀ R, ElimModal True false false (|={E}=> R)%I R Q Q') → + InvOpener E E (â–· P ∗ na_own p (F ∖ ↑ N)) (â–· P ∗ na_own p (F ∖ ↑ N)) + (Some (na_own p F)) Q Q' → ElimInv (↑N ⊆ E ∧ ↑N ⊆ F) (na_inv p N P) (na_own p F) - (â–· P ∗ na_own p (F∖↑N)) (â–· P ∗ na_own p (F∖↑N) ={E}=∗ na_own p F) Q Q'. + (â–· P ∗ na_own p (F∖↑N)) Q Q'. Proof. - rewrite /ElimInv /ElimModal. iIntros (Helim (?&?)) "(#H1&Hown&H2)". - iApply Helim; [done|]; simpl. iSplitR "H2"; [|done]. - iMod (na_inv_open p E F N P with "[#] [Hown]") as "(HP&Hown&Hclose)"; auto. - by iFrame. + rewrite /ElimInv /InvOpener. iIntros (Helim (?&?)) "(#Hinv & Hown & Hcont)". + iApply (Helim with "Hcont"). clear Helim. rewrite -assoc /=. + iApply (na_inv_open with "Hinv"); done. Qed. End proofs. diff --git a/theories/base_logic/lib/sts.v b/theories/base_logic/lib/sts.v index 0d8e8ced6..ecf58f3aa 100644 --- a/theories/base_logic/lib/sts.v +++ b/theories/base_logic/lib/sts.v @@ -156,7 +156,8 @@ Section sts. ⌜s ∈ S⌠∗ â–· φ s ∗ ∀ s' T', ⌜sts.steps (s, T) (s', T')⌠∗ â–· φ s' ={E∖↑N,E}=∗ sts_own γ s' T'. Proof. - iIntros (?) "[#? Hγf]". rewrite /sts_ctx. iInv N as "Hinv" "Hclose". + iIntros (?) "[Hinv Hγf]". rewrite /sts_ctx. + iMod (inv_open with "Hinv") as "[Hinv Hclose]"; first done. (* The following is essentially a very trivial composition of the accessors [sts_acc] and [inv_open] -- but since we don't have any good support for that currently, this gets more tedious than it should, with us having diff --git a/theories/base_logic/lib/viewshifts.v b/theories/base_logic/lib/viewshifts.v index e45a87c0c..6f418757b 100644 --- a/theories/base_logic/lib/viewshifts.v +++ b/theories/base_logic/lib/viewshifts.v @@ -72,7 +72,8 @@ Qed. Lemma vs_inv N E P Q R : ↑N ⊆ E → inv N R ∗ (â–· R ∗ P ={E∖↑N}=> â–· R ∗ Q) ⊢ P ={E}=> Q. Proof. - iIntros (?) "#[? Hvs] !# HP". iInv N as "HR" "Hclose". + iIntros (?) "#[Hinv Hvs] !# HP". + iMod (inv_open with "Hinv") as "[HR Hclose]"; first done. iMod ("Hvs" with "[HR HP]") as "[? $]"; first by iFrame. by iApply "Hclose". Qed. diff --git a/theories/heap_lang/lib/counter.v b/theories/heap_lang/lib/counter.v index 8aee1924b..94252d1bd 100644 --- a/theories/heap_lang/lib/counter.v +++ b/theories/heap_lang/lib/counter.v @@ -46,24 +46,24 @@ Section mono_proof. {{{ mcounter l n }}} incr #l {{{ RET #(); mcounter l (S n) }}}. Proof. iIntros (Φ) "Hl HΦ". iLöb as "IH". wp_rec. - iDestruct "Hl" as (γ) "[#Hinv Hγf]". - wp_bind (! _)%E. iInv N as (c) ">[Hγ Hl]" "Hclose". - wp_load. iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|]. - iModIntro. wp_let. wp_op. - wp_bind (CAS _ _ _). iInv N as (c') ">[Hγ Hl]" "Hclose". + iDestruct "Hl" as (γ) "[#? Hγf]". + wp_bind (! _)%E. iInv N as (c) ">[Hγ Hl]". + wp_load. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. + wp_let. wp_op. + wp_bind (CAS _ _ _). iInv N as (c') ">[Hγ Hl]". destruct (decide (c' = c)) as [->|]. - iDestruct (own_valid_2 with "Hγ Hγf") as %[?%mnat_included _]%auth_valid_discrete_2. iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]". { apply auth_update, (mnat_local_update _ _ (S c)); auto. } - wp_cas_suc. iMod ("Hclose" with "[Hl Hγ]") as "_". + wp_cas_suc. iSplitL "Hl Hγ". { iNext. iExists (S c). rewrite Nat2Z.inj_succ Z.add_1_l. by iFrame. } - iModIntro. wp_if. iApply "HΦ"; iExists γ; repeat iSplit; eauto. + wp_if. iApply "HΦ"; iExists γ; repeat iSplit; eauto. iApply (own_mono with "Hγf"). apply: auth_frag_mono. by apply mnat_included, le_n_S. - wp_cas_fail; first (by intros [= ?%Nat2Z.inj]). - iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c'; by iFrame|]. - iModIntro. wp_if. iApply ("IH" with "[Hγf] [HΦ]"); last by auto. + iSplitL "Hl Hγ"; [iNext; iExists c'; by iFrame|]. + wp_if. iApply ("IH" with "[Hγf] [HΦ]"); last by auto. rewrite {3}/mcounter; eauto 10. Qed. @@ -71,12 +71,13 @@ Section mono_proof. {{{ mcounter l j }}} read #l {{{ i, RET #i; ⌜j ≤ iâŒ%nat ∧ mcounter l i }}}. Proof. iIntros (Ï•) "Hc HΦ". iDestruct "Hc" as (γ) "[#Hinv Hγf]". - rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load. + rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]". + iApply wp_fupd. wp_load. iDestruct (own_valid_2 with "Hγ Hγf") as %[?%mnat_included _]%auth_valid_discrete_2. iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]". { apply auth_update, (mnat_local_update _ _ c); auto. } - iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|]. + iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. iApply ("HΦ" with "[-]"). rewrite /mcounter; eauto 10. Qed. End mono_proof. @@ -123,19 +124,19 @@ Section contrib_spec. {{{ RET #(); ccounter γ q (S n) }}}. Proof. iIntros (Φ) "[#? Hγf] HΦ". iLöb as "IH". wp_rec. - wp_bind (! _)%E. iInv N as (c) ">[Hγ Hl]" "Hclose". - wp_load. iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|]. - iModIntro. wp_let. wp_op. - wp_bind (CAS _ _ _). iInv N as (c') ">[Hγ Hl]" "Hclose". + wp_bind (! _)%E. iInv N as (c) ">[Hγ Hl]". + wp_load. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. + wp_let. wp_op. + wp_bind (CAS _ _ _). iInv N as (c') ">[Hγ Hl]". destruct (decide (c' = c)) as [->|]. - iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]". { apply frac_auth_update, (nat_local_update _ _ (S c) (S n)); omega. } - wp_cas_suc. iMod ("Hclose" with "[Hl Hγ]") as "_". + wp_cas_suc. iSplitL "Hl Hγ". { iNext. iExists (S c). rewrite Nat2Z.inj_succ Z.add_1_l. by iFrame. } - iModIntro. wp_if. by iApply "HΦ". + wp_if. by iApply "HΦ". - wp_cas_fail; first (by intros [= ?%Nat2Z.inj]). - iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c'; by iFrame|]. - iModIntro. wp_if. by iApply ("IH" with "[Hγf] [HΦ]"); auto. + iSplitL "Hl Hγ"; [iNext; iExists c'; by iFrame|]. + wp_if. by iApply ("IH" with "[Hγf] [HΦ]"); auto. Qed. Lemma read_contrib_spec γ l q n : @@ -143,9 +144,9 @@ Section contrib_spec. {{{ c, RET #c; ⌜n ≤ câŒ%nat ∧ ccounter γ q n }}}. Proof. iIntros (Φ) "[#? Hγf] HΦ". - rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load. + rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]". wp_load. iDestruct (own_valid_2 with "Hγ Hγf") as % ?%frac_auth_included_total%nat_included. - iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|]. + iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. iApply ("HΦ" with "[-]"); rewrite /ccounter; eauto 10. Qed. @@ -154,9 +155,9 @@ Section contrib_spec. {{{ n, RET #n; ccounter γ 1 n }}}. Proof. iIntros (Φ) "[#? Hγf] HΦ". - rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load. + rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]". wp_load. iDestruct (own_valid_2 with "Hγ Hγf") as % <-%frac_auth_agreeL. - iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|]. + iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. by iApply "HΦ". Qed. End contrib_spec. diff --git a/theories/heap_lang/lib/increment.v b/theories/heap_lang/lib/increment.v index 331ba1db0..f4d2d8803 100644 --- a/theories/heap_lang/lib/increment.v +++ b/theories/heap_lang/lib/increment.v @@ -68,7 +68,7 @@ Section increment_client. WP incr_client #x {{ _, True }}%I. Proof using Type*. wp_let. wp_alloc l as "Hl". wp_let. - iMod (inv_alloc nroot _ (∃x':Z, l ↦ #x')%I with "[Hl]") as "#?"; first eauto. + iMod (inv_alloc nroot _ (∃x':Z, l ↦ #x')%I with "[Hl]") as "#Hinv"; first eauto. (* FIXME: I am only usign persistent stuff, so I should be allowed to move this to the persisten context even without the additional â–¡. *) iAssert (â–¡ atomic_update (λ (v: Z), l ↦ #v) @@ -78,7 +78,8 @@ Section increment_client. { iAlways. iExists True%I, True%I. repeat (iSplit; first done). clear x. iIntros "!#" (E) "% _". assert (E = ⊤) as -> by set_solver. - iInv nroot as (x) ">H↦" "Hclose". + iMod (inv_open with "Hinv") as "[>H↦ Hclose]"; first done. + iDestruct "H↦" as (x) "H↦". iMod fupd_intro_mask' as "Hclose2"; last iModIntro; first set_solver. iExists _. iFrame. iSplit. { iIntros "H↦". iMod "Hclose2" as "_". iMod ("Hclose" with "[-]"); last done. diff --git a/theories/heap_lang/lib/spawn.v b/theories/heap_lang/lib/spawn.v index f9059566e..4a5f29dec 100644 --- a/theories/heap_lang/lib/spawn.v +++ b/theories/heap_lang/lib/spawn.v @@ -55,21 +55,21 @@ Proof. wp_apply wp_fork; simpl. iSplitR "Hf". - wp_seq. iApply "HΦ". rewrite /join_handle. eauto. - wp_bind (f _). iApply (wp_wand with "Hf"); iIntros (v) "Hv". - iInv N as (v') "[Hl _]" "Hclose". - wp_store. iApply "Hclose". iNext. iExists (SOMEV v). iFrame. eauto. + iInv N as (v') "[Hl _]". + wp_store. iSplit; last done. iNext. iExists (SOMEV v). iFrame. eauto. Qed. Lemma join_spec (Ψ : val → iProp Σ) l : {{{ join_handle l Ψ }}} join #l {{{ v, RET v; Ψ v }}}. Proof. iIntros (Φ) "H HΦ". iDestruct "H" as (γ) "[Hγ #?]". - iLöb as "IH". wp_rec. wp_bind (! _)%E. iInv N as (v) "[Hl Hinv]" "Hclose". + iLöb as "IH". wp_rec. wp_bind (! _)%E. iInv N as (v) "[Hl Hinv]". wp_load. iDestruct "Hinv" as "[%|Hinv]"; subst. - - iMod ("Hclose" with "[Hl]"); [iNext; iExists _; iFrame; eauto|]. - iModIntro. wp_match. iApply ("IH" with "Hγ [HΦ]"). auto. + - iSplitL "Hl"; [iNext; iExists _; iFrame; eauto|]. + wp_match. iApply ("IH" with "Hγ [HΦ]"). auto. - iDestruct "Hinv" as (v' ->) "[HΨ|Hγ']". - + iMod ("Hclose" with "[Hl Hγ]"); [iNext; iExists _; iFrame; eauto|]. - iModIntro. wp_match. by iApply "HΦ". + + iSplitL "Hl Hγ"; [iNext; iExists _; iFrame; eauto|]. + wp_match. by iApply "HΦ". + iDestruct (own_valid_2 with "Hγ Hγ'") as %[]. Qed. End proof. diff --git a/theories/heap_lang/lib/spin_lock.v b/theories/heap_lang/lib/spin_lock.v index 23b63251c..fda6a03ed 100644 --- a/theories/heap_lang/lib/spin_lock.v +++ b/theories/heap_lang/lib/spin_lock.v @@ -61,12 +61,12 @@ Section proof. {{{ b, RET #b; if b is true then locked γ ∗ R else True }}}. Proof. iIntros (Φ) "#Hl HΦ". iDestruct "Hl" as (l ->) "#Hinv". - wp_rec. iInv N as ([]) "[Hl HR]" "Hclose". - - wp_cas_fail. iMod ("Hclose" with "[Hl]"); first (iNext; iExists true; eauto). - iModIntro. iApply ("HΦ" $! false). done. + wp_rec. iInv N as ([]) "[Hl HR]". + - wp_cas_fail. iSplitL "Hl"; first (iNext; iExists true; eauto). + iApply ("HΦ" $! false). done. - wp_cas_suc. iDestruct "HR" as "[Hγ HR]". - iMod ("Hclose" with "[Hl]"); first (iNext; iExists true; eauto). - iModIntro. rewrite /locked. by iApply ("HΦ" $! true with "[$Hγ $HR]"). + iSplitL "Hl"; first (iNext; iExists true; eauto). + rewrite /locked. by iApply ("HΦ" $! true with "[$Hγ $HR]"). Qed. Lemma acquire_spec γ lk R : @@ -83,8 +83,9 @@ Section proof. Proof. iIntros (Φ) "(Hlock & Hlocked & HR) HΦ". iDestruct "Hlock" as (l ->) "#Hinv". - rewrite /release /=. wp_let. iInv N as (b) "[Hl _]" "Hclose". - wp_store. iApply "HΦ". iApply "Hclose". iNext. iExists false. by iFrame. + rewrite /release /=. wp_let. iInv N as (b) "[Hl _]". + wp_store. iSplitR "HΦ"; last by iApply "HΦ". + iNext. iExists false. by iFrame. Qed. End proof. diff --git a/theories/heap_lang/lib/ticket_lock.v b/theories/heap_lang/lib/ticket_lock.v index c108b3f36..94e8ac955 100644 --- a/theories/heap_lang/lib/ticket_lock.v +++ b/theories/heap_lang/lib/ticket_lock.v @@ -88,20 +88,18 @@ Section proof. Proof. iIntros (Φ) "[Hl Ht] HΦ". iDestruct "Hl" as (lo ln ->) "#Hinv". iLöb as "IH". wp_rec. subst. wp_let. wp_proj. wp_bind (! _)%E. - iInv N as (o n) "(Hlo & Hln & Ha)" "Hclose". + iInv N as (o n) "(Hlo & Hln & Ha)". wp_load. destruct (decide (x = o)) as [->|Hneq]. - iDestruct "Ha" as "[Hainv [[Ho HR] | Haown]]". - + iMod ("Hclose" with "[Hlo Hln Hainv Ht]") as "_". + + iSplitL "Hlo Hln Hainv Ht". { iNext. iExists o, n. iFrame. } - iModIntro. wp_let. wp_op. case_bool_decide; [|done]. - wp_if. + wp_let. wp_op. case_bool_decide; [|done]. wp_if. iApply ("HΦ" with "[-]"). rewrite /locked. iFrame. eauto. + iDestruct (own_valid_2 with "Ht Haown") as % [_ ?%gset_disj_valid_op]. set_solver. - - iMod ("Hclose" with "[Hlo Hln Ha]"). + - iSplitL "Hlo Hln Ha". { iNext. iExists o, n. by iFrame. } - iModIntro. wp_let. - wp_op. case_bool_decide; [simplify_eq |]. + wp_let. wp_op. case_bool_decide; [simplify_eq |]. wp_if. iApply ("IH" with "Ht"). iNext. by iExact "HΦ". Qed. @@ -110,30 +108,28 @@ Section proof. Proof. iIntros (Ï•) "Hl HΦ". iDestruct "Hl" as (lo ln ->) "#Hinv". iLöb as "IH". wp_rec. wp_bind (! _)%E. simplify_eq/=. wp_proj. - iInv N as (o n) "[Hlo [Hln Ha]]" "Hclose". - wp_load. iMod ("Hclose" with "[Hlo Hln Ha]") as "_". + iInv N as (o n) "[Hlo [Hln Ha]]". + wp_load. iSplitL "Hlo Hln Ha". { iNext. iExists o, n. by iFrame. } - iModIntro. wp_let. wp_proj. wp_op. - wp_bind (CAS _ _ _). - iInv N as (o' n') "(>Hlo' & >Hln' & >Hauth & Haown)" "Hclose". + wp_let. wp_proj. wp_op. wp_bind (CAS _ _ _). + iInv N as (o' n') "(>Hlo' & >Hln' & >Hauth & Haown)". destruct (decide (#n' = #n))%V as [[= ->%Nat2Z.inj] | Hneq]. - - wp_cas_suc. - iMod (own_update with "Hauth") as "[Hauth Hofull]". + - iMod (own_update with "Hauth") as "[Hauth Hofull]". { eapply auth_update_alloc, prod_local_update_2. eapply (gset_disj_alloc_empty_local_update _ {[ n ]}). apply (seq_set_S_disjoint 0). } rewrite -(seq_set_S_union_L 0). - iMod ("Hclose" with "[Hlo' Hln' Haown Hauth]") as "_". + wp_cas_suc. iSplitL "Hlo' Hln' Haown Hauth". { iNext. iExists o', (S n). rewrite Nat2Z.inj_succ -Z.add_1_r. by iFrame. } - iModIntro. wp_if. + wp_if. iApply (wait_loop_spec γ (#lo, #ln) with "[-HΦ]"). + iFrame. rewrite /is_lock; eauto 10. + by iNext. - wp_cas_fail. - iMod ("Hclose" with "[Hlo' Hln' Hauth Haown]") as "_". + iSplitL "Hlo' Hln' Hauth Haown". { iNext. iExists o', n'. by iFrame. } - iModIntro. wp_if. by iApply "IH"; auto. + wp_if. by iApply "IH"; auto. Qed. Lemma release_spec γ lk R : @@ -142,15 +138,15 @@ Section proof. iIntros (Φ) "(Hl & Hγ & HR) HΦ". iDestruct "Hl" as (lo ln ->) "#Hinv". iDestruct "Hγ" as (o) "Hγo". wp_let. wp_proj. wp_proj. wp_bind (! _)%E. - iInv N as (o' n) "(>Hlo & >Hln & >Hauth & Haown)" "Hclose". + iInv N as (o' n) "(>Hlo & >Hln & >Hauth & Haown)". wp_load. iDestruct (own_valid_2 with "Hauth Hγo") as %[[<-%Excl_included%leibniz_equiv _]%prod_included _]%auth_valid_discrete_2. - iMod ("Hclose" with "[Hlo Hln Hauth Haown]") as "_". + iSplitL "Hlo Hln Hauth Haown". { iNext. iExists o, n. by iFrame. } - iModIntro. wp_op. - iInv N as (o' n') "(>Hlo & >Hln & >Hauth & Haown)" "Hclose". - wp_store. + wp_op. + iInv N as (o' n') "(>Hlo & >Hln & >Hauth & Haown)". + iApply wp_fupd. wp_store. iDestruct (own_valid_2 with "Hauth Hγo") as %[[<-%Excl_included%leibniz_equiv _]%prod_included _]%auth_valid_discrete_2. iDestruct "Haown" as "[[Hγo' _]|Haown]". @@ -158,7 +154,7 @@ Section proof. iMod (own_update_2 with "Hauth Hγo") as "[Hauth Hγo]". { apply auth_update, prod_local_update_1. by apply option_local_update, (exclusive_local_update _ (Excl (S o))). } - iMod ("Hclose" with "[Hlo Hln Hauth Haown Hγo HR]") as "_"; last by iApply "HΦ". + iModIntro. iSplitR "HΦ"; last by iApply "HΦ". iNext. iExists (S o), n'. rewrite Nat2Z.inj_succ -Z.add_1_r. iFrame. iLeft. by iFrame. Qed. diff --git a/theories/program_logic/weakestpre.v b/theories/program_logic/weakestpre.v index 8aa18f95e..e671a953f 100644 --- a/theories/program_logic/weakestpre.v +++ b/theories/program_logic/weakestpre.v @@ -404,4 +404,26 @@ Section proofmode_classes. Global Instance add_modal_fupd_wp s E e P Φ : AddModal (|={E}=> P) P (WP e @ s; E {{ Φ }}). Proof. by rewrite /AddModal fupd_frame_r wand_elim_r fupd_wp. Qed. + + Global Instance inv_opener_wp E1 E2 P P' (P'' : option _) e s Φ : + Atomic (stuckness_to_atomicity s) e → + InvOpener E1 E2 P P' P'' (WP e @ s; E1 {{ Φ }}) + (WP e @ s; E2 {{ v, P' ∗ coq_tactics.maybe_wand P'' (Φ v) }})%I. + Proof. + intros ?. rewrite /InvOpener. setoid_rewrite coq_tactics.maybe_wand_sound. + iIntros "Hinner >[HP Hclose]". + iApply (wp_wand with "[Hinner HP]"); first by iApply "Hinner". + iIntros (v) "[HP HΦ]". iApply "HΦ". by iApply "Hclose". + Qed. + + Global Instance inv_opener_wp_nonatomic E P P' (P'' : option _) e s Φ : + InvOpener E E P P' P'' (WP e @ s; E {{ Φ }}) + (WP e @ s; E {{ v, P' ∗ coq_tactics.maybe_wand P'' (Φ v) }})%I. + Proof. + rewrite /InvOpener. setoid_rewrite coq_tactics.maybe_wand_sound. + iIntros "Hinner >[HP Hclose]". iApply wp_fupd. + iApply (wp_wand with "[Hinner HP]"); first by iApply "Hinner". + iIntros (v) "[HP HΦ]". iApply "HΦ". by iApply "Hclose". + Qed. + End proofmode_classes. diff --git a/theories/proofmode/class_instances_sbi.v b/theories/proofmode/class_instances_sbi.v index 78b7091f7..fdfdb69a8 100644 --- a/theories/proofmode/class_instances_sbi.v +++ b/theories/proofmode/class_instances_sbi.v @@ -1,6 +1,6 @@ From stdpp Require Import nat_cancel. From iris.bi Require Import bi tactics. -From iris.proofmode Require Import modality_instances classes. +From iris.proofmode Require Import modality_instances classes class_instances_bi ltac_tactics. Set Default Proof Using "Type". Import bi. @@ -551,6 +551,18 @@ Global Instance add_modal_embed_fupd_goal `{BiEmbedFUpd PROP PROP'} AddModal P P' (|={E1,E2}=> ⎡Q⎤)%I → AddModal P P' ⎡|={E1,E2}=> Q⎤. Proof. by rewrite /AddModal !embed_fupd. Qed. +(* InvOpener *) +Global Instance inv_opener_vs `{BiFUpd PROP} E1 E2 E P P' (P'' : option PROP) Q : + (* FIXME: Why %I? ElimInv should set the right scopes! *) + InvOpener E1 E2 P P' P'' + (|={E1,E}=> Q) (|={E2}=> (P' ∗ (coq_tactics.maybe_wand P'' (|={E1,E}=> Q))))%I. +Proof. + rewrite /InvOpener coq_tactics.maybe_wand_sound. + iIntros "Hinner >[HP Hclose]". + iMod ("Hinner" with "HP") as "[HP Hfin]". + iMod ("Hclose" with "HP") as "HP''". by iApply "Hfin". +Qed. + (* IntoLater *) Global Instance into_laterN_0 only_head P : IntoLaterN only_head 0 P P. Proof. by rewrite /IntoLaterN /MaybeIntoLaterN. Qed. diff --git a/theories/proofmode/classes.v b/theories/proofmode/classes.v index cf32bcd96..ed0e4d354 100644 --- a/theories/proofmode/classes.v +++ b/theories/proofmode/classes.v @@ -513,12 +513,27 @@ Class IntoInv {PROP : bi} (P: PROP) (N: namespace). Arguments IntoInv {_} _%I _. Hint Mode IntoInv + ! - : typeclass_instances. +(** Typeclass for assertions around which invariants can be opened. + Inputs: [Q] + Outputs: [E1], [E2], [P], [P'], [Q'] + + Transforms the goal [Q] into the goal [Q'] where additional assumptions [P] + are available, obtaining may require accessing invariants. Later, [P'] has + to be given up again to close these invariants again, which will + produce [P'']. If [P''] is None, that signifies [emp] and will be used to + make the goal shown to the user nicer (i.e., no unnecessary hypothesis is + added) *) +Class InvOpener `{BiFUpd PROP} E1 E2 (P P' : PROP) (P'' : option PROP) (Q Q' : PROP) := + inv_opener : ((P -∗ Q') -∗ (|={E1,E2}=> P ∗ (P' ={E2,E1}=∗ default emp P'' id)) -∗ Q). +Arguments InvOpener {_} {_} _ _ _%I _%I _%I _%I : simpl never. +Arguments inv_opener {_} {_} _ _ _%I _%I _%I _%I {_}. +Hint Mode InvOpener + + - - - - - ! - : typeclass_instances. + (* Input: [Pinv] Arguments: - [Pinv] is an invariant assertion - [Pin] is an additional assertion needed for opening an invariant - [Pout] is the assertion obtained by opening the invariant - - [Pclose] is the assertion which contains an update modality to close the invariant - [Q] is a goal on which iInv may be invoked - [Q'] is the transformed goal that must be proved after opening the invariant. @@ -527,11 +542,11 @@ Hint Mode IntoInv + ! - : typeclass_instances. is not a clearly associated instance of ElimModal of the right form (e.g. to handle Iris 2.0 usage of iInv). *) -Class ElimInv {PROP : bi} (φ : Prop) (Pinv Pin Pout Pclose Q Q' : PROP) := - elim_inv : φ → Pinv ∗ Pin ∗ (Pout ∗ Pclose -∗ Q') ⊢ Q. +Class ElimInv {PROP : bi} (φ : Prop) (Pinv Pin Pout Q Q' : PROP) := + elim_inv : φ → Pinv ∗ Pin ∗ (Pout -∗ Q') ⊢ Q. Arguments ElimInv {_} _ _%I _%I _%I _%I _%I : simpl never. -Arguments elim_inv {_} _ _%I _%I _%I _%I _%I _%I _%I. -Hint Mode ElimInv + - ! - - - ! - : typeclass_instances. +Arguments elim_inv {_} _ _ _%I _%I _%I _%I _%I. +Hint Mode ElimInv + - ! - - ! - : typeclass_instances. (* We make sure that tactics that perform actions on *specific* hypotheses or parts of the goal look through the [tc_opaque] connective, which is used to make @@ -579,6 +594,6 @@ Instance elim_modal_tc_opaque {PROP : bi} φ p p' (P P' Q Q' : PROP) : ElimModal φ p p' P P' Q Q' → ElimModal φ p p' (tc_opaque P) P' Q Q' := id. Instance into_inv_tc_opaque {PROP : bi} (P : PROP) N : IntoInv P N → IntoInv (tc_opaque P) N := id. -Instance elim_inv_tc_opaque {PROP : bi} φ (Pinv Pin Pout Pclose Q Q' : PROP) : - ElimInv φ Pinv Pin Pout Pclose Q Q' → - ElimInv φ (tc_opaque Pinv) Pin Pout Pclose Q Q' := id. +Instance elim_inv_tc_opaque {PROP : bi} φ (Pinv Pin Pout Q Q' : PROP) : + ElimInv φ Pinv Pin Pout Q Q' → + ElimInv φ (tc_opaque Pinv) Pin Pout Q Q' := id. diff --git a/theories/proofmode/coq_tactics.v b/theories/proofmode/coq_tactics.v index d8b0f59fd..f5c42b628 100644 --- a/theories/proofmode/coq_tactics.v +++ b/theories/proofmode/coq_tactics.v @@ -136,6 +136,12 @@ Definition prop_of_env {PROP : bi} (Γ : env PROP) : PROP := in match Γ with Enil => emp%I | Esnoc Γ _ P => aux Γ P end. +Definition maybe_wand {PROP : bi} (P : option PROP) (Q : PROP) : PROP := + match P with + | None => Q + | Some P => (P -∗ Q)%I + end. + (* Coq versions of the tactics *) Section bi_tactics. Context {PROP : bi}. @@ -438,6 +444,10 @@ Proof. rewrite /= assoc (comm _ P0 P) IH //. Qed. +Lemma maybe_wand_sound (P : option PROP) Q : + maybe_wand P Q ⊣⊢ (default emp P id -∗ Q). +Proof. destruct P; simpl; first done. rewrite emp_wand //. Qed. + Global Instance envs_Forall2_refl (R : relation PROP) : Reflexive R → Reflexive (envs_Forall2 R). Proof. by constructor. Qed. @@ -1066,19 +1076,19 @@ Proof. Qed. (** * Invariants *) -Lemma tac_inv_elim Δ Δ' i j φ p P Pin Pout Pclose Q Q' : +Lemma tac_inv_elim Δ Δ' i j φ p P Pin Pout Q Q' : envs_lookup_delete false i Δ = Some (p, P, Δ') → - ElimInv φ P Pin Pout Pclose Q Q' → + ElimInv φ P Pin Pout Q Q' → φ → (∀ R, ∃ Δ'', - envs_app false (Esnoc Enil j (Pin -∗ (Pout -∗ Pclose -∗ Q') -∗ R)%I) Δ' = Some Δ'' ∧ + envs_app false (Esnoc Enil j (Pin -∗ (Pout -∗ Q') -∗ R)%I) Δ' = Some Δ'' ∧ envs_entails Δ'' R) → envs_entails Δ Q. Proof. rewrite envs_entails_eq=> /envs_lookup_delete_Some [? ->] ?? /(_ Q) [Δ'' [? <-]]. rewrite (envs_lookup_sound' _ false) // envs_app_singleton_sound //; simpl. apply wand_elim_r', wand_mono; last done. apply wand_intro_r, wand_intro_r. - rewrite intuitionistically_if_elim -assoc wand_curry. auto. + rewrite intuitionistically_if_elim -assoc. auto. Qed. (** * Accumulate hypotheses *) diff --git a/theories/proofmode/ltac_tactics.v b/theories/proofmode/ltac_tactics.v index 49999e5b6..2f2230a2a 100644 --- a/theories/proofmode/ltac_tactics.v +++ b/theories/proofmode/ltac_tactics.v @@ -15,7 +15,7 @@ Declare Reduction env_cbv := cbv [ envs_lookup envs_lookup_delete envs_delete envs_snoc envs_app envs_simple_replace envs_replace envs_split envs_clear_spatial envs_clear_persistent envs_incr_counter - envs_split_go envs_split prop_of_env]. + envs_split_go envs_split prop_of_env maybe_wand]. Ltac env_cbv := match goal with |- ?u => let v := eval env_cbv in u in change v end. Ltac env_reflexivity := env_cbv; exact eq_refl. @@ -1887,7 +1887,7 @@ Tactic Notation "iAssumptionInv" constr(N) := (* The argument [select] is the namespace [N] or hypothesis name ["H"] of the invariant. *) -Tactic Notation "iInvCore" constr(select) "with" constr(pats) "as" tactic(tac) constr(Hclose) := +Tactic Notation "iInvCore" constr(select) "with" constr(pats) "as" tactic(tac) := iStartProof; let pats := spec_pat.parse pats in lazymatch pats with @@ -1897,67 +1897,68 @@ Tactic Notation "iInvCore" constr(select) "with" constr(pats) "as" tactic(tac) c let H := iFresh in lazymatch type of select with | string => - eapply tac_inv_elim with _ select H _ _ _ _ _ _ _; + eapply tac_inv_elim with _ select H _ _ _ _ _ _; first by (iAssumptionCore || fail "iInv: invariant" select "not found") | ident => - eapply tac_inv_elim with _ select H _ _ _ _ _ _ _; + eapply tac_inv_elim with _ select H _ _ _ _ _ _; first by (iAssumptionCore || fail "iInv: invariant" select "not found") | namespace => - eapply tac_inv_elim with _ _ H _ _ _ _ _ _ _; + eapply tac_inv_elim with _ _ H _ _ _ _ _ _; first by (iAssumptionInv select || fail "iInv: invariant" select "not found") | _ => fail "iInv: selector" select "is not of the right type " end; [iSolveTC || - let I := match goal with |- ElimInv _ ?I _ _ _ _ _ => I end in + let I := match goal with |- ElimInv _ ?I _ _ _ _ => I end in fail "iInv: cannot eliminate invariant " I |try (split_and?; solve [ fast_done | solve_ndisj ]) |let R := fresh in intros R; eexists; split; [env_reflexivity|]; iSpecializePat H pats; last ( - iApplyHyp H; clear R; - iIntros H; (* H was spatial, so it's gone due to the apply and we can reuse the name *) - iIntros Hclose; + iApplyHyp H; clear R; env_cbv; + iIntro H; (* H was spatial, so it's gone due to the apply and we can reuse the name *) tac H )]. -Tactic Notation "iInvCore" constr(N) "as" tactic(tac) constr(Hclose) := - iInvCore N with "[$]" as ltac:(tac) Hclose. +Tactic Notation "iInvCore" constr(N) "as" tactic(tac) := + iInvCore N with "[$]" as ltac:(tac). -Tactic Notation "iInv" constr(N) "as" constr(pat) constr(Hclose) := - iInvCore N as (fun H => iDestructHyp H as pat) Hclose. +Tactic Notation "iInv" constr(N) "as" constr(pat) := + iInvCore N as (fun H => iDestructHyp H as pat). Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1) ")" - constr(pat) constr(Hclose) := - iInvCore N as (fun H => iDestructHyp H as (x1) pat) Hclose. + constr(pat) := + iInvCore N as (fun H => iDestructHyp H as (x1) pat). Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1) - simple_intropattern(x2) ")" constr(pat) constr(Hclose) := - iInvCore N as (fun H => iDestructHyp H as (x1 x2) pat) Hclose. + simple_intropattern(x2) ")" constr(pat) := + iInvCore N as (fun H => iDestructHyp H as (x1 x2) pat). Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) ")" - constr(pat) constr(Hclose) := - iInvCore N as (fun H => iDestructHyp H as (x1 x2 x3) pat) Hclose. + constr(pat) := + iInvCore N as (fun H => iDestructHyp H as (x1 x2 x3) pat). Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")" - constr(pat) constr(Hclose) := - iInvCore N as (fun H => iDestructHyp H as (x1 x2 x3 x4) pat) Hclose. -Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" constr(pat) constr(Hclose) := - iInvCore N with Hs as (fun H => iDestructHyp H as pat) Hclose. + constr(pat) := + iInvCore N as (fun H => iDestructHyp H as (x1 x2 x3 x4) pat). +Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" constr(pat) := + iInvCore N with Hs as (fun H => iDestructHyp H as pat). Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" "(" simple_intropattern(x1) ")" - constr(pat) constr(Hclose) := - iInvCore N with Hs as (fun H => iDestructHyp H as (x1) pat) Hclose. + constr(pat) := + iInvCore N with Hs as (fun H => iDestructHyp H as (x1) pat). Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" "(" simple_intropattern(x1) - simple_intropattern(x2) ")" constr(pat) constr(Hclose) := - iInvCore N with Hs as (fun H => iDestructHyp H as (x1 x2) pat) Hclose. + simple_intropattern(x2) ")" constr(pat) := + iInvCore N with Hs as (fun H => iDestructHyp H as (x1 x2) pat). Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" "(" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) ")" - constr(pat) constr(Hclose) := - iInvCore N with Hs as (fun H => iDestructHyp H as (x1 x2 x3) pat) Hclose. + constr(pat) := + iInvCore N with Hs as (fun H => iDestructHyp H as (x1 x2 x3) pat). Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" "(" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")" - constr(pat) constr(Hclose) := - iInvCore N with Hs as (fun H => iDestructHyp H as (x1 x2 x3 x4) pat) Hclose. + constr(pat) := + iInvCore N with Hs as (fun H => iDestructHyp H as (x1 x2 x3 x4) pat). +(* Miscellaneous *) Tactic Notation "iAccu" := iStartProof; eapply tac_accu; [env_reflexivity || fail "iAccu: not an evar"]. +(** Automation *) Hint Extern 0 (_ ⊢ _) => iStartProof. (* Make sure that by and done solve trivial things in proof mode *) diff --git a/theories/proofmode/monpred.v b/theories/proofmode/monpred.v index d3a495e55..31cbbb4bf 100644 --- a/theories/proofmode/monpred.v +++ b/theories/proofmode/monpred.v @@ -486,12 +486,12 @@ Global Instance add_modal_at_fupd_goal `{BiFUpd PROP} E1 E2 ð“Ÿ ð“Ÿ' Q i : AddModal ð“Ÿ ð“Ÿ' (|={E1,E2}=> Q i) → AddModal ð“Ÿ ð“Ÿ' ((|={E1,E2}=> Q) i). Proof. by rewrite /AddModal !monPred_at_fupd. Qed. -Global Instance elim_inv_embed φ ð“Ÿinv ð“Ÿin ð“Ÿout ð“Ÿclose Pin Pout Pclose Q Q' : - (∀ i, ElimInv φ ð“Ÿinv ð“Ÿin ð“Ÿout ð“Ÿclose (Q i) (Q' i)) → - MakeEmbed ð“Ÿin Pin → MakeEmbed ð“Ÿout Pout → MakeEmbed ð“Ÿclose Pclose → - ElimInv φ ⎡ð“Ÿinv⎤ Pin Pout Pclose Q Q'. +Global Instance elim_inv_embed φ ð“Ÿinv ð“Ÿin ð“Ÿout Pin Pout Q Q' : + (∀ i, ElimInv φ ð“Ÿinv ð“Ÿin ð“Ÿout (Q i) (Q' i)) → + MakeEmbed ð“Ÿin Pin → MakeEmbed ð“Ÿout Pout → + ElimInv φ ⎡ð“Ÿinv⎤ Pin Pout Q Q'. Proof. - rewrite /MakeEmbed /ElimInv=>H <- <- <- ?. iStartProof PROP. + rewrite /MakeEmbed /ElimInv=>H <- <- ?. iStartProof PROP. iIntros (?) "(?&?&HQ')". iApply H; [done|]. iFrame. iIntros "?". by iApply "HQ'". Qed. End sbi. diff --git a/theories/tests/one_shot.v b/theories/tests/one_shot.v index 566f52580..204ef6fff 100644 --- a/theories/tests/one_shot.v +++ b/theories/tests/one_shot.v @@ -49,15 +49,15 @@ Proof. { iNext. iLeft. by iSplitL "Hl". } iModIntro. iApply "Hf"; iSplit. - iIntros (n) "!#". wp_let. - iInv N as ">[[Hl Hγ]|H]" "Hclose"; last iDestruct "H" as (m) "[Hl Hγ]". - + wp_cas_suc. iMod (own_update with "Hγ") as "Hγ". + iInv N as ">[[Hl Hγ]|H]"; last iDestruct "H" as (m) "[Hl Hγ]". + + iMod (own_update with "Hγ") as "Hγ". { by apply cmra_update_exclusive with (y:=Shot n). } - iMod ("Hclose" with "[-]"); last eauto. + wp_cas_suc. iSplitL; last eauto. iNext; iRight; iExists n; by iFrame. - + wp_cas_fail. iMod ("Hclose" with "[-]"); last eauto. + + wp_cas_fail. iSplitL; last eauto. rewrite /one_shot_inv; eauto 10. - iIntros "!# /=". wp_seq. wp_bind (! _)%E. - iInv N as ">Hγ" "Hclose". + iInv N as ">Hγ". iAssert (∃ v, l ↦ v ∗ ((⌜v = NONEV⌠∗ own γ Pending) ∨ ∃ n : Z, ⌜v = SOMEV #n⌠∗ own γ (Shot n)))%I with "[Hγ]" as "Hv". { iDestruct "Hγ" as "[[Hl Hγ]|Hl]"; last iDestruct "Hl" as (m) "[Hl Hγ]". @@ -69,18 +69,18 @@ Proof. { iDestruct "Hv" as "[[% ?]|Hv]"; last iDestruct "Hv" as (m) "[% ?]"; subst. + iSplit. iLeft; by iSplitL "Hl". eauto. + iSplit. iRight; iExists m; by iSplitL "Hl". eauto. } - iMod ("Hclose" with "[Hinv]") as "_"; eauto; iModIntro. + iSplitL "Hinv"; first by eauto. wp_let. iIntros "!#". wp_seq. iDestruct "Hv" as "[%|Hv]"; last iDestruct "Hv" as (m) "[% Hγ']"; subst. { by wp_match. } wp_match. wp_bind (! _)%E. - iInv N as ">[[Hl Hγ]|H]" "Hclose"; last iDestruct "H" as (m') "[Hl Hγ]". + iInv N as ">[[Hl Hγ]|H]"; last iDestruct "H" as (m') "[Hl Hγ]". { by iDestruct (own_valid_2 with "Hγ Hγ'") as %?. } wp_load. iDestruct (own_valid_2 with "Hγ Hγ'") as %?%agree_op_invL'; subst. - iMod ("Hclose" with "[Hl]") as "_". + iSplitL "Hl". { iNext; iRight; by eauto. } - iModIntro. wp_match. iApply wp_assert. + wp_match. iApply wp_assert. wp_op. by case_bool_decide. Qed. diff --git a/theories/tests/proofmode_iris.v b/theories/tests/proofmode_iris.v index 606dd94a4..dd793e037 100644 --- a/theories/tests/proofmode_iris.v +++ b/theories/tests/proofmode_iris.v @@ -63,9 +63,8 @@ Section iris_tests. Lemma test_iInv_0 N P: inv N (<pers> P) ={⊤}=∗ â–· P. Proof. iIntros "#H". - iInv N as "#H2" "Hclose". - iMod ("Hclose" with "H2"). - iModIntro. by iNext. + iInv N as "#H2". + iModIntro. iSplit; auto. Qed. Lemma test_iInv_1 N E P: @@ -73,18 +72,16 @@ Section iris_tests. inv N (<pers> P) ={E}=∗ â–· P. Proof. iIntros (?) "#H". - iInv N as "#H2" "Hclose". - iMod ("Hclose" with "H2"). - iModIntro. by iNext. + iInv N as "#H2". + iModIntro. iSplit; auto. Qed. Lemma test_iInv_2 γ p N P: cinv N γ (<pers> P) ∗ cinv_own γ p ={⊤}=∗ cinv_own γ p ∗ â–· P. Proof. iIntros "(#?&?)". - iInv N as "(#HP&Hown)" "Hclose". - iMod ("Hclose" with "HP"). - iModIntro. iFrame. by iNext. + iInv N as "(#HP&Hown)". + iModIntro. iSplit; auto with iFrame. Qed. Lemma test_iInv_3 γ p1 p2 N P: @@ -92,9 +89,8 @@ Section iris_tests. ={⊤}=∗ cinv_own γ p1 ∗ cinv_own γ p2 ∗ â–· P. Proof. iIntros "(#?&Hown1&Hown2)". - iInv N with "[Hown2 //]" as "(#HP&Hown2)" "Hclose". - iMod ("Hclose" with "HP"). - iModIntro. iFrame. by iNext. + iInv N with "[Hown2 //]" as "(#HP&Hown2)". + iModIntro. iSplit; auto with iFrame. Qed. Lemma test_iInv_4 t N E1 E2 P: @@ -103,10 +99,8 @@ Section iris_tests. ⊢ |={⊤}=> na_own t E1 ∗ na_own t E2 ∗ â–· P. Proof. iIntros (?) "(#?&Hown1&Hown2)". - iInv N as "(#HP&Hown2)" "Hclose". - iMod ("Hclose" with "[HP Hown2]"). - { iFrame. done. } - iModIntro. iFrame. by iNext. + iInv N as "(#HP&Hown2)". + iModIntro. iSplitL "Hown2"; auto with iFrame. Qed. (* test named selection of which na_own to use *) @@ -116,10 +110,8 @@ Section iris_tests. ={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ â–· P. Proof. iIntros (?) "(#?&Hown1&Hown2)". - iInv N with "Hown2" as "(#HP&Hown2)" "Hclose". - iMod ("Hclose" with "[HP Hown2]"). - { iFrame. done. } - iModIntro. iFrame. by iNext. + iInv N with "Hown2" as "(#HP&Hown2)". + iModIntro. iSplitL "Hown2"; auto with iFrame. Qed. Lemma test_iInv_6 t N E1 E2 P: @@ -128,10 +120,8 @@ Section iris_tests. ={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ â–· P. Proof. iIntros (?) "(#?&Hown1&Hown2)". - iInv N with "Hown1" as "(#HP&Hown1)" "Hclose". - iMod ("Hclose" with "[HP Hown1]"). - { iFrame. done. } - iModIntro. iFrame. by iNext. + iInv N with "Hown1" as "(#HP&Hown1)". + iModIntro. iSplitL "Hown1"; auto with iFrame. Qed. (* test robustness in presence of other invariants *) @@ -141,18 +131,15 @@ Section iris_tests. ={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ â–· P. Proof. iIntros (?) "(#?&#?&#?&Hown1&Hown2)". - iInv N3 with "Hown1" as "(#HP&Hown1)" "Hclose". - iMod ("Hclose" with "[HP Hown1]"). - { iFrame. done. } - iModIntro. iFrame. by iNext. + iInv N3 with "Hown1" as "(#HP&Hown1)". + iModIntro. iSplitL "Hown1"; auto with iFrame. Qed. (* iInv should work even where we have "inv N P" in which P contains an evar *) Lemma test_iInv_8 N : ∃ P, inv N P ={⊤}=∗ P ≡ True ∧ inv N P. Proof. eexists. iIntros "#H". - iInv N as "HP" "Hclose". - iMod ("Hclose" with "[$HP]"). auto. + iInv N as "HP". iFrame "HP". auto. Qed. (* test selection by hypothesis name instead of namespace *) @@ -162,9 +149,8 @@ Section iris_tests. ={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ â–· P. Proof. iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)". - iInv "HInv" with "Hown1" as "(#HP&Hown1)" "Hclose". - iMod ("Hclose" with "[$HP $Hown1]"). - iModIntro. iFrame. by iNext. + iInv "HInv" with "Hown1" as "(#HP&Hown1)". + iModIntro. iSplitL "Hown1"; auto with iFrame. Qed. (* test selection by hypothesis name instead of namespace *) @@ -174,27 +160,24 @@ Section iris_tests. ={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ â–· P. Proof. iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)". - iInv "HInv" as "(#HP&Hown1)" "Hclose". - iMod ("Hclose" with "[$HP $Hown1]"). - iModIntro. iFrame. by iNext. + iInv "HInv" as "(#HP&Hown1)". + iModIntro. iSplitL "Hown1"; auto with iFrame. Qed. (* test selection by ident name *) Lemma test_iInv_11 N P: inv N (<pers> P) ={⊤}=∗ â–· P. Proof. let H := iFresh in - (iIntros H; iInv H as "#H2" "Hclose"). - iMod ("Hclose" with "H2"). - iModIntro. by iNext. + (iIntros H; iInv H as "#H2"). auto. Qed. (* error messages *) Lemma test_iInv_12 N P: inv N (<pers> P) ={⊤}=∗ True. Proof. iIntros "H". - Fail iInv 34 as "#H2" "Hclose". - Fail iInv nroot as "#H2" "Hclose". - Fail iInv "H2" as "#H2" "Hclose". + Fail iInv 34 as "#H2". + Fail iInv nroot as "#H2". + Fail iInv "H2" as "#H2". done. Qed. @@ -202,9 +185,7 @@ Section iris_tests. Lemma test_iInv_13 N: inv N (∃ (v1 v2 v3 : nat), emp ∗ emp ∗ emp) ={⊤}=∗ â–· emp. Proof. - iIntros "H"; iInv "H" as (v1 v2 v3) "(?&?&_)" "Hclose". - iMod ("Hclose" with "[]"). - { iNext; iExists O; done. } - iModIntro. by iNext. + iIntros "H"; iInv "H" as (v1 v2 v3) "(?&?&_)". + eauto. Qed. End iris_tests. -- GitLab