diff --git a/CHANGELOG.md b/CHANGELOG.md index 62570bec7cd4034bf24a320bbc3c657d7053efa7..012580e53d83aad5402bfec4eae32bfda0527580 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -46,6 +46,9 @@ Coq development, but not every API-breaking change is listed. Changes marked basic proofmode support. * Sealed the definitions of `big_opS`, `big_opMS`, `big_opM` and `big_sepM2` to prevent undesired simplification. +* Better handling of persistent results in `iDestruct`, `iPoseProof`, `iAssert`, + and friends. See https://gitlab.mpi-sws.org/iris/iris/merge_requests/341 for + more details. ## Iris 3.2.0 (released 2019-08-29) diff --git a/tests/proofmode.ref b/tests/proofmode.ref index 6cbde74af585b88184beb7098640ccd525d82a3c..93b90699c55e66edf9d87d38478d714bf882be8d 100644 --- a/tests/proofmode.ref +++ b/tests/proofmode.ref @@ -66,6 +66,24 @@ In nested Ltac calls to "iClear (constr)", "iElaborateSelPat" and "<iris.proofmode.ltac_tactics.iElaborateSelPat_go>", last call failed. Tactic failure: iElaborateSelPat: "HQ" not found. The command has indeed failed with message: +In nested Ltac calls to "iSpecialize (open_constr) as #", +"iSpecializeCore (open_constr) as (constr)", +"iSpecializeCore (open_constr) as (constr)" and +"iSpecializeCore (open_constr) with (open_constr) (open_constr) as (constr)", +last call failed. +Tactic failure: iSpecialize: Q not persistent. +"test_iAssert_intuitionistic" + : string +The command has indeed failed with message: +In nested Ltac calls to "<ssreflect_plugin::ssrtclseq@0> iAssert (|==> P)%I with "[#]" as "#HPupd2" ; first done", +"<ssreflect_plugin::ssrtclseq@0> iAssert (|==> P)%I with "[#]" as "#HPupd2" ; first done", +"iAssert (open_constr) with (constr) as (constr)", +"iAssertCore (open_constr) with (constr) as (constr) (tactic3)", +"iSpecializeCore (open_constr) with (open_constr) (open_constr) as (constr)", +"iSpecializePat (open_constr) (constr)" and "iSpecializePat_go", last call +failed. +Tactic failure: iSpecialize: (|==> P)%I not persistent. +The command has indeed failed with message: In nested Ltac calls to "iSpecialize (open_constr)", "iSpecializeCore (open_constr) as (constr)", "iSpecializeCore (open_constr) as (constr)", diff --git a/tests/proofmode.v b/tests/proofmode.v index 9194db0b7f8de8952bbe7480443ee2ce87ea1923..27b0a34e1f1de36da34a5ae7c63d143e420d6cc8 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -157,6 +157,62 @@ Lemma test_iSpecialize_Coq_entailment P Q R : P → (P -∗ Q) → Q. Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed. +Lemma test_iSpecialize_intuitionistic P Q R : + □ P -∗ □ (P -∗ P -∗ P -∗ P -∗ □ P -∗ P -∗ Q) -∗ R -∗ R ∗ □ (P ∗ Q). +Proof. + iIntros "#HP #H HR". + (* Test that [H] remains in the intuitionistic context *) + iSpecialize ("H" with "HP"). + iSpecialize ("H" with "[HP]"); first done. + iSpecialize ("H" with "[]"); first done. + iSpecialize ("H" with "[-HR]"); first done. + iSpecialize ("H" with "[#]"); first done. + iFrame "HR". + iSpecialize ("H" with "[-]"); first done. + by iFrame "#". +Qed. + +Lemma test_iSpecialize_intuitionistic_2 P Q R : + □ P -∗ □ (P -∗ P -∗ P -∗ P -∗ □ P -∗ P -∗ Q) -∗ R -∗ R ∗ □ (P ∗ Q). +Proof. + iIntros "#HP #H HR". + (* Test that [H] remains in the intuitionistic context *) + iSpecialize ("H" with "HP") as #. + iSpecialize ("H" with "[HP]") as #; first done. + iSpecialize ("H" with "[]") as #; first done. + iSpecialize ("H" with "[-HR]") as #; first done. + iSpecialize ("H" with "[#]") as #; first done. + iFrame "HR". + iSpecialize ("H" with "[-]") as #; first done. + by iFrame "#". +Qed. + +Lemma test_iSpecialize_intuitionistic_3 P Q R : + P -∗ □ (P -∗ Q) -∗ □ (P -∗ <pers> Q) -∗ □ (Q -∗ R) -∗ P ∗ □ (Q ∗ R). +Proof. + iIntros "HP #H1 #H2 #H3". + (* Should fail, [Q] is not persistent *) + Fail iSpecialize ("H1" with "HP") as #. + (* Should succeed, [<pers> Q] is persistent *) + iSpecialize ("H2" with "HP") as #. + (* Should succeed, despite [R] not being persistent, no spatial premises are + needed to prove [Q] *) + iSpecialize ("H3" with "H2") as #. + by iFrame "#". +Qed. + +Check "test_iAssert_intuitionistic". +Lemma test_iAssert_intuitionistic `{!BiBUpd PROP} P : + □ P -∗ □ |==> P. +Proof. + iIntros "#HP". + (* Test that [HPupd1] ends up in the intuitionistic context *) + iAssert (|==> P)%I with "[]" as "#HPupd1"; first done. + (* This should not work, [|==> P] is not persistent. *) + Fail iAssert (|==> P)%I with "[#]" as "#HPupd2"; first done. + done. +Qed. + Lemma test_iPure_intro_emp R `{!Affine R} : R -∗ emp. Proof. iIntros "HR". by iPureIntro. Qed. diff --git a/theories/proofmode/base.v b/theories/proofmode/base.v index c28fbbe9d5bd6833e200a93dd95f6dba478b9bd7..e50c8c88d01afe04a894150f55358621b3b51f45 100644 --- a/theories/proofmode/base.v +++ b/theories/proofmode/base.v @@ -17,6 +17,10 @@ the actual operations that may appear in users' proofs. *) Lemma lazy_andb_true (b1 b2 : bool) : b1 &&& b2 = true ↔ b1 = true ∧ b2 = true. Proof. destruct b1, b2; intuition congruence. Qed. +Definition negb (b : bool) : bool := if b then false else true. +Lemma negb_true b : negb b = true ↔ b = false. +Proof. by destruct b. Qed. + Fixpoint Pos_succ (x : positive) : positive := match x with | (p~1)%positive => ((Pos_succ p)~0)%positive @@ -94,7 +98,10 @@ Qed. Lemma ident_beq_reflect i1 i2 : reflect (i1 = i2) (ident_beq i1 i2). Proof. apply iff_reflect. by rewrite ident_beq_true. Qed. -(** Copies of some [option] combinators for better reduction control. *) +(** Copies of some functions on [list] and [option] for better reduction control. *) +Fixpoint pm_app {A} (l1 l2 : list A) : list A := + match l1 with [] => l2 | x :: l1 => x :: pm_app l1 l2 end. + Definition pm_option_bind {A B} (f : A → option B) (mx : option A) : option B := match mx with Some x => f x | None => None end. Arguments pm_option_bind {_ _} _ !_ /. diff --git a/theories/proofmode/coq_tactics.v b/theories/proofmode/coq_tactics.v index 757a3b6c610ef7c6048342136e221a05233f66aa..50d3c69880b399ca0a05a319564bac9bcd051ef5 100644 --- a/theories/proofmode/coq_tactics.v +++ b/theories/proofmode/coq_tactics.v @@ -286,13 +286,14 @@ Proof. - by rewrite HR assoc !wand_elim_r. Qed. -Lemma tac_specialize_assert Δ j q neg js R P1 P2 P1' Q : +Lemma tac_specialize_assert Δ j (q am neg : bool) js R P1 P2 P1' Q : envs_lookup j Δ = Some (q, R) → - IntoWand q false R P1 P2 → AddModal P1' P1 Q → + IntoWand q false R P1 P2 → + (if am then AddModal P1' P1 Q else TCEq P1' P1) → match ''(Δ1,Δ2) ↠envs_split (if neg is true then Right else Left) - js (envs_delete true j q Δ); - Δ2' ↠envs_app false (Esnoc Enil j P2) Δ2; + js (envs_delete true j q Δ); + Δ2' ↠envs_app (negb am &&& q &&& env_spatial_is_nil Δ1) (Esnoc Enil j P2) Δ2; Some (Δ1,Δ2') (* does not preserve position of [j] *) with | Some (Δ1,Δ2') => @@ -301,15 +302,21 @@ Lemma tac_specialize_assert Δ j q neg js R P1 P2 P1' Q : | None => False end → envs_entails Δ Q. Proof. - rewrite envs_entails_eq. intros ??? HQ. + rewrite envs_entails_eq. intros ?? Hmod HQ. destruct (_ ≫= _) as [[Δ1 Δ2']|] eqn:?; last done. destruct HQ as [HP1 HQ]. destruct (envs_split _ _ _) as [[? Δ2]|] eqn:?; simplify_eq/=; destruct (envs_app _ _ _) eqn:?; simplify_eq/=. rewrite envs_lookup_sound // envs_split_sound //. rewrite (envs_app_singleton_sound Δ2) //; simpl. - rewrite HP1 (into_wand q false) /= -(add_modal P1' P1 Q). cancel [P1']. - apply wand_intro_l. by rewrite assoc !wand_elim_r. + rewrite -intuitionistically_if_idemp (into_wand q false) /=. + destruct (negb am &&& q &&& env_spatial_is_nil Δ1) eqn:Hp; simpl. + - move: Hp. rewrite !lazy_andb_true negb_true. intros [[-> ->] ?]; simpl. + destruct Hmod. rewrite env_spatial_is_nil_intuitionistically // HP1. + by rewrite assoc intuitionistically_sep_2 wand_elim_l wand_elim_r HQ. + - rewrite intuitionistically_if_elim HP1. destruct am; last destruct Hmod. + + by rewrite assoc -(comm _ P1') -assoc wand_trans HQ. + + by rewrite assoc wand_elim_l wand_elim_r HQ. Qed. Lemma tac_unlock_emp Δ Q : envs_entails Δ Q → envs_entails Δ (emp ∗ locked Q). @@ -319,18 +326,18 @@ Proof. rewrite envs_entails_eq=> ->. by rewrite -lock -True_sep_2. Qed. Lemma tac_unlock Δ Q : envs_entails Δ Q → envs_entails Δ (locked Q). Proof. by unlock. Qed. -Lemma tac_specialize_frame Δ j q R P1 P2 P1' Q Q' : +Lemma tac_specialize_frame Δ j (q am : bool) R P1 P2 P1' Q Q' : envs_lookup j Δ = Some (q, R) → IntoWand q false R P1 P2 → - AddModal P1' P1 Q → + (if am then AddModal P1' P1 Q else TCEq P1' P1) → envs_entails (envs_delete true j q Δ) (P1' ∗ locked Q') → Q' = (P2 -∗ Q)%I → envs_entails Δ Q. Proof. - rewrite envs_entails_eq. intros ??? HPQ ->. + rewrite envs_entails_eq. intros ?? Hmod HPQ ->. rewrite envs_lookup_sound //. rewrite HPQ -lock. - rewrite (into_wand q false) -{2}(add_modal P1' P1 Q). cancel [P1']. - apply wand_intro_l. by rewrite assoc !wand_elim_r. + rewrite (into_wand q false) /= assoc -(comm _ P1') -assoc wand_trans. + destruct am; [done|destruct Hmod]. by rewrite wand_elim_r. Qed. Lemma tac_specialize_assert_pure Δ j q a R P1 P2 φ Q : diff --git a/theories/proofmode/ltac_tactics.v b/theories/proofmode/ltac_tactics.v index d9ff74e69a6f454e0a87c4318b7a4f7fd9857d3e..5fdeb14cc77258d73d0913264daf06ef0db9f441 100644 --- a/theories/proofmode/ltac_tactics.v +++ b/theories/proofmode/ltac_tactics.v @@ -903,15 +903,13 @@ Ltac iSpecializePat_go H1 pats := fail "iSpecialize: cannot select hypotheses for intuitionistic premise" | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats => let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in - notypeclasses refine (tac_specialize_assert _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _); + notypeclasses refine (tac_specialize_assert _ H1 _ + (if m is GModal then true else false) lr Hs' _ _ _ _ _ _ _ _ _); [pm_reflexivity || let H1 := pretty_ident H1 in fail "iSpecialize:" H1 "not found" |solve_to_wand H1 - |lazymatch m with - | GSpatial => class_apply add_modal_id - | GModal => iSolveTC || fail "iSpecialize: goal not a modality" - end + |iSolveTC || fail "iSpecialize: goal not a modality" |pm_reduce; lazymatch goal with | |- False => @@ -934,15 +932,13 @@ Ltac iSpecializePat_go H1 pats := |pm_reduce; solve [iFrame "∗ #"] |pm_reduce; iSpecializePat_go H1 pats] | SAutoFrame ?m :: ?pats => - notypeclasses refine (tac_specialize_frame _ H1 _ _ _ _ _ _ _ _ _ _ _ _); + notypeclasses refine (tac_specialize_frame _ H1 _ + (if m is GModal then true else false) _ _ _ _ _ _ _ _ _ _ _); [pm_reflexivity || let H1 := pretty_ident H1 in fail "iSpecialize:" H1 "not found" |solve_to_wand H1 - |lazymatch m with - | GSpatial => class_apply add_modal_id - | GModal => iSolveTC || fail "iSpecialize: goal not a modality" - end + |iSolveTC || fail "iSpecialize: goal not a modality" |pm_reduce; first [notypeclasses refine (tac_unlock_emp _ _ _) @@ -955,15 +951,66 @@ Ltac iSpecializePat_go H1 pats := Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) := let pats := spec_pat.parse pat in iSpecializePat_go H pats. -(** The argument [p] denotes whether the conclusion of the specialized term is -intuitionistic. If so, one can use all spatial hypotheses for both proving the -premises and the remaning goal. The argument [p] can either be a Boolean or an -introduction pattern, which will be coerced into [true] when it solely contains -`#` or `%` patterns at the top-level. +(** The tactics [iSpecialize trm as #] and [iSpecializeCore trm as true] allow +one to use the entire spatial context /twice/: the first time for proving the +premises [Q1 .. Qn] of [H : Q1 -* .. -∗ Qn -∗ R], and the second time for +proving the remaining goal. This is possible if all of the following properties +hold: +1. The conclusion [R] of the hypothesis [H] is persistent. +2. The specialization pattern [[> ..]] for wrapping a modality is not used for + any of the premises [Q1 .. Qn]. +3. The BI is either affine, or the hypothesis [H] resides in the intuitionistic + context. + +The copying of the context for proving the premises of [H] and the remaining +goal is implemented using the lemma [tac_specialize_intuitionistic_helper]. + +Since the tactic [iSpecialize .. as #] is used a helper to implement +[iDestruct .. as "#.."], [iPoseProof .. as "#.."], [iSpecialize .. as "#.."], +and friends, the behavior on violations of these conditions is as follows: + +- If condition 1 is violated (i.e. the conclusion [R] of [H] is not persistent), + the tactic will fail. +- If condition 2 or 3 is violated, the tactic will fall back to consuming the + hypotheses for proving the premises [Q1 .. Qn]. That is, it will fall back to + not using [tac_specialize_intuitionistic_helper]. + +The function [use_tac_specialize_intuitionistic_helper Δ pat] below returns +[true] iff the specialization pattern [pat] consumes any spatial hypotheses, +and does not contain the pattern [[> ..]] (cf. condition 2). If the function +returns [false], then the conclusion can be moved in the intuitionistic context +even if conditions 1 and 3 do not hold. Therefore, in that case, we prefer +putting the conclusion to the intuitionistic context directly and not using +[tac_specialize_intuitionistic_helper], which requires conditions 1 and 3. *) +Fixpoint use_tac_specialize_intuitionistic_helper {M} + (Δ : envs M) (pats : list spec_pat) : bool := + match pats with + | [] => false + | (SForall | SPureGoal _) :: pats => + use_tac_specialize_intuitionistic_helper Δ pats + | SAutoFrame _ :: _ => true + | SIdent H _ :: pats => + match envs_lookup_delete false H Δ with + | Some (false, _, Δ) => true + | Some (true, _, Δ) => use_tac_specialize_intuitionistic_helper Δ pats + | None => false (* dummy case (invalid pattern, will fail in the tactic anyway) *) + end + | SGoal (SpecGoal GModal _ _ _ _) :: _ => false + | SGoal (SpecGoal GIntuitionistic _ _ _ _) :: pats => + use_tac_specialize_intuitionistic_helper Δ pats + | SGoal (SpecGoal GSpatial neg Hs_frame Hs _) :: pats => + match envs_split (if neg is true then Right else Left) + (if neg then Hs else pm_app Hs_frame Hs) Δ with + | Some (Δ1,Δ2) => if env_spatial_is_nil Δ1 + then use_tac_specialize_intuitionistic_helper Δ2 pats + else true + | None => false (* dummy case (invalid pattern, will fail in the tactic anyway) *) + end + end. -In case the specialization pattern in [t] states that the modality of the goal -should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p] -defaults to [false] (i.e. spatial hypotheses are not preserved). *) +(** The argument [p] of [iSpecializeCore] can either be a Boolean, or an +introduction pattern that is coerced into [true] when it solely contains [#] or +[%] patterns at the top-level. *) Tactic Notation "iSpecializeCore" open_constr(H) "with" open_constr(xs) open_constr(pat) "as" constr(p) := let p := intro_pat_intuitionistic p in @@ -976,25 +1023,17 @@ Tactic Notation "iSpecializeCore" open_constr(H) iSpecializeArgs H xs; [..| lazymatch type of H with | ident => - (* The lemma [tac_specialize_intuitionistic_helper] allows one to use the - whole spatial context for: - - proving the premises of the lemma we specialize, and, - - the remaining goal. - - We can only use if all of the following properties hold: - - The result of the specialization is persistent. - - No modality is eliminated. - - If the BI is not affine, the hypothesis should be in the intuitionistic - context. - - As an optimization, we do only use [tac_specialize_intuitionistic_helper] - if no implications nor wands are eliminated, i.e. [pat ≠[]]. *) let pat := spec_pat.parse pat in - lazymatch eval compute in - (p && bool_decide (pat ≠[]) && negb (existsb spec_pat_modal pat)) with + let Δ := iGetCtx in + (* Check if we should use [tac_specialize_intuitionistic_helper]. Notice + that [pm_eval] does not unfold [use_tac_specialize_intuitionistic_helper], + so we should do that first. *) + let b := eval cbv [use_tac_specialize_intuitionistic_helper] in + (if p then use_tac_specialize_intuitionistic_helper Δ pat else false) in + lazymatch eval pm_eval in b with | true => - (* Check that if the BI is not affine, the hypothesis is in the - intuitionistic context. *) + (* Check that the BI is either affine, or the hypothesis [H] resides + in the intuitionistic context. *) lazymatch iTypeOf H with | Some (?q, _) => let PROP := iBiOfGoal in @@ -1003,10 +1042,11 @@ Tactic Notation "iSpecializeCore" open_constr(H) notypeclasses refine (tac_specialize_intuitionistic_helper _ H _ _ _ _ _ _ _ _ _ _); [pm_reflexivity (* This premise, [envs_lookup j Δ = Some (q,P)], - holds because [iTypeOf] succeeded *) + holds because the [iTypeOf] above succeeded *) |pm_reduce; iSolveTC - (* This premise, [if q then TCTrue else BiAffine PROP], - holds because [q || TC_to_bool (BiAffine PROP)] is true *) + (* This premise, [if q then TCTrue else BiAffine PROP], holds + because we established that [q || TC_to_bool (BiAffine PROP)] + is true *) |iSpecializePat H pat; [.. |notypeclasses refine (tac_specialize_intuitionistic_helper_done _ H _ _ _); diff --git a/theories/proofmode/reduction.v b/theories/proofmode/reduction.v index ba3090367327c75f7473f4cf1c7c2a96522ea36c..6ce3ffd9c6f798cb1d1daad4be072d3afa1fb945 100644 --- a/theories/proofmode/reduction.v +++ b/theories/proofmode/reduction.v @@ -6,7 +6,8 @@ From iris.proofmode Require Import base environments. do not reduce e.g. before unification happens in [iApply].*) Declare Reduction pm_eval := cbv [ (* base *) - base.beq base.Pos_succ base.ascii_beq base.string_beq base.positive_beq base.ident_beq + base.negb base.beq + base.Pos_succ base.ascii_beq base.string_beq base.positive_beq base.ident_beq (* environments *) env_lookup env_lookup_delete env_delete env_app env_replace env_dom env_intuitionistic env_spatial env_counter env_spatial_is_nil envs_dom @@ -15,8 +16,8 @@ Declare Reduction pm_eval := cbv [ envs_clear_spatial envs_clear_intuitionistic envs_incr_counter envs_split_go envs_split env_to_prop_go env_to_prop env_to_prop_and_go env_to_prop_and - (* PM option combinators *) - pm_option_bind pm_from_option pm_option_fun + (* PM list and option functions *) + pm_app pm_option_bind pm_from_option pm_option_fun ]. Ltac pm_eval t := eval pm_eval in t.