From d96f252ebf4f0ce69329cb36e5cad039cf5fc75f Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Sun, 10 Dec 2017 14:31:48 +0100 Subject: [PATCH] Revert "Docs: fix capitals of section." This reverts commit 7a6d36c68948ac179f0519f73c7f857b0ebd1eea. --- docs/algebra.tex | 2 +- docs/base-logic.tex | 2 +- docs/constructions.tex | 2 +- docs/ghost-state.tex | 2 +- docs/program-logic.tex | 10 +++++----- 5 files changed, 9 insertions(+), 9 deletions(-) diff --git a/docs/algebra.tex b/docs/algebra.tex index 5c2222caa..dc8bdead2 100644 --- a/docs/algebra.tex +++ b/docs/algebra.tex @@ -1,4 +1,4 @@ -\section{Algebraic structures} +\section{Algebraic Structures} \subsection{OFE} diff --git a/docs/base-logic.tex b/docs/base-logic.tex index 63e44070d..2a45cae7c 100644 --- a/docs/base-logic.tex +++ b/docs/base-logic.tex @@ -1,4 +1,4 @@ -\section{Base logic} +\section{Base Logic} \label{sec:base-logic} The base logic is parameterized by an arbitrary CMRA $\monoid$ having a unit $\munit$. diff --git a/docs/constructions.tex b/docs/constructions.tex index 1ec372c84..0a205d845 100644 --- a/docs/constructions.tex +++ b/docs/constructions.tex @@ -17,7 +17,7 @@ Note that in the definition of the carrier $\latert\cofe$, $\latertinj$ is a con $\latert(-)$ is a locally \emph{contractive} functor from $\OFEs$ to $\OFEs$. -\subsection{Uniform predicates} +\subsection{Uniform Predicates} Given a CMRA $\monoid$, we define the COFE $\UPred(\monoid)$ of \emph{uniform predicates} over $\monoid$ as follows: \begin{align*} diff --git a/docs/ghost-state.tex b/docs/ghost-state.tex index 4dc9f1626..bd10d54ef 100644 --- a/docs/ghost-state.tex +++ b/docs/ghost-state.tex @@ -1,4 +1,4 @@ -\section{Extensions of the base logic} +\section{Extensions of the Base Logic} In this section we discuss some additional constructions that we define within and on top of the base logic. These are not ``extensions'' in the sense that they change the proof power of the logic, they just form useful derived principles. diff --git a/docs/program-logic.tex b/docs/program-logic.tex index 079b811d3..06a9f7495 100644 --- a/docs/program-logic.tex +++ b/docs/program-logic.tex @@ -5,7 +5,7 @@ This section describes how to build a program logic for an arbitrary language (\cf \Sref{sec:language}) on top of the base logic. So in the following, we assume that some language $\Lang$ was fixed. -\subsection{Dynamic composeable higher-order resources} +\subsection{Dynamic Composeable Higher-Order Resources} \label{sec:composeable-resources} The base logic described in \Sref{sec:base-logic} works over an arbitrary CMRA $\monoid$ defining the structure of the resources. @@ -101,7 +101,7 @@ We will typically leave the $M_i$ implicit when asserting ghost ownership, as th -\subsection{World satisfaction, invariants, fancy updates} +\subsection{World Satisfaction, Invariants, Fancy Updates} \label{sec:invariants} To introduce invariants into our logic, we will define weakest precondition to explicitly thread through the proof that all the invariants are maintained throughout program execution. @@ -137,7 +137,7 @@ The following assertion states that an invariant with name $\iname$ exists and m \[ \knowInv\iname\prop \eqdef \ownGhost{\gname_{\textmon{Inv}}} {\authfrag \mapsingleton \iname {\aginj(\latertinj(\wIso(\prop)))}} \] -\paragraph{Fancy updates and view shifts.} +\paragraph{Fancy Updates and View Shifts.} Next, we define \emph{fancy updates}, which are essentially the same as the basic updates of the base logic ($\Sref{sec:base-logic}$), except that they also have access to world satisfaction and can enable and disable invariants: \[ \pvs[\mask_1][\mask_2] \prop \eqdef W * \ownGhost{\gname_{\textmon{En}}}{\mask_1} \wand \upd\diamond (W * \ownGhost{\gname_{\textmon{En}}}{\mask_2} * \prop) \] Here, $\mask_1$ and $\mask_2$ are the \emph{masks} of the view update, defining which invariants have to be (at least!) available before and after the update. @@ -244,7 +244,7 @@ Still, just to give an idea of what view shifts ``are'', here are some proof rul {\FALSE \vs[\mask_1][\mask_2] \prop } \end{mathparpagebreakable} -\subsection{Weakest preconditions} +\subsection{Weakest Precondition} Finally, we can define the core piece of the program logic, the assertion that reasons about program behavior: Weakest precondition, from which Hoare triples will be derived. @@ -439,7 +439,7 @@ We only give some of the proof rules for Hoare triples here, since we usually do % {\knowInv\iname\propC \proves \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \set\iname]} \end{mathparpagebreakable} -\subsection{Invariant namespaces} +\subsection{Invariant Namespaces} \label{sec:namespaces} In \Sref{sec:invariants}, we defined an assertion $\knowInv\iname\prop$ expressing knowledge (\ie the assertion is persistent) that $\prop$ is maintained as invariant with name $\iname$. -- GitLab