From c6499532c3d0ec5321ba68928bd9e730ac6700ad Mon Sep 17 00:00:00 2001
From: Robbert Krebbers <mail@robbertkrebbers.nl>
Date: Wed, 4 Nov 2020 11:12:02 +0100
Subject: [PATCH] Remove `bi.tactics`.

---
 _CoqProject           |   1 -
 theories/bi/tactics.v | 214 ------------------------------------------
 2 files changed, 215 deletions(-)
 delete mode 100644 theories/bi/tactics.v

diff --git a/_CoqProject b/_CoqProject
index d61142069..37fc08f79 100644
--- a/_CoqProject
+++ b/_CoqProject
@@ -54,7 +54,6 @@ theories/bi/big_op.v
 theories/bi/updates.v
 theories/bi/ascii.v
 theories/bi/bi.v
-theories/bi/tactics.v
 theories/bi/monpred.v
 theories/bi/embedding.v
 theories/bi/weakestpre.v
diff --git a/theories/bi/tactics.v b/theories/bi/tactics.v
deleted file mode 100644
index 8881d03dc..000000000
--- a/theories/bi/tactics.v
+++ /dev/null
@@ -1,214 +0,0 @@
-From stdpp Require Import gmap.
-From iris.bi Require Export bi.
-From iris Require Import options.
-Import bi.
-
-Module bi_reflection. Section bi_reflection.
-  Context {PROP : bi}.
-
-  Inductive expr :=
-    | EEmp : expr
-    | EVar : nat → expr
-    | ESep : expr → expr → expr.
-  Fixpoint eval (Σ : list PROP) (e : expr) : PROP :=
-    match e with
-    | EEmp => emp
-    | EVar n => default emp (Σ !! n)
-    | ESep e1 e2 => eval Σ e1 ∗ eval Σ e2
-    end%I.
-  Fixpoint flatten (e : expr) : list nat :=
-    match e with
-    | EEmp => []
-    | EVar n => [n]
-    | ESep e1 e2 => flatten e1 ++ flatten e2
-    end.
-
-  Notation eval_list Σ l := ([∗ list] n ∈ l, default emp (Σ !! n))%I.
-
-  Lemma eval_flatten Σ e : eval Σ e ⊣⊢ eval_list Σ (flatten e).
-  Proof.
-    induction e as [| |e1 IH1 e2 IH2];
-      rewrite /= ?right_id ?big_opL_app ?IH1 ?IH2 //.
-  Qed.
-
-  (* Can be related to the RHS being affine *)
-  Lemma flatten_entails `{BiAffine PROP} Σ e1 e2 :
-    flatten e2 ⊆+ flatten e1 → eval Σ e1 ⊢ eval Σ e2.
-  Proof. intros. rewrite !eval_flatten. by apply big_sepL_submseteq. Qed.
-  Lemma flatten_equiv Σ e1 e2 :
-    flatten e2 ≡ₚ flatten e1 → eval Σ e1 ⊣⊢ eval Σ e2.
-  Proof. intros He. by rewrite !eval_flatten He. Qed.
-
-  Fixpoint prune (e : expr) : expr :=
-    match e with
-    | EEmp => EEmp
-    | EVar n => EVar n
-    | ESep e1 e2 =>
-       match prune e1, prune e2 with
-       | EEmp, e2' => e2'
-       | e1', EEmp => e1'
-       | e1', e2' => ESep e1' e2'
-       end
-    end.
-  Lemma flatten_prune e : flatten (prune e) = flatten e.
-  Proof.
-    induction e as [| |e1 IH1 e2 IH2]; simplify_eq/=; auto.
-    rewrite -IH1 -IH2. by repeat case_match; rewrite ?right_id_L.
-  Qed.
-  Lemma prune_correct Σ e : eval Σ (prune e) ⊣⊢ eval Σ e.
-  Proof. by rewrite !eval_flatten flatten_prune. Qed.
-
-  Fixpoint cancel_go (n : nat) (e : expr) : option expr :=
-    match e with
-    | EEmp => None
-    | EVar n' => if decide (n = n') then Some EEmp else None
-    | ESep e1 e2 =>
-       match cancel_go n e1 with
-       | Some e1' => Some (ESep e1' e2)
-       | None => ESep e1 <$> cancel_go n e2
-       end
-    end.
-  Definition cancel (ns : list nat) (e: expr) : option expr :=
-    prune <$> fold_right (mbind ∘ cancel_go) (Some e) ns.
-  Lemma flatten_cancel_go e e' n :
-    cancel_go n e = Some e' → flatten e ≡ₚ n :: flatten e'.
-  Proof.
-    revert e'; induction e as [| |e1 IH1 e2 IH2]; intros;
-      repeat (simplify_option_eq || case_match); auto.
-    - by rewrite IH1 //.
-    - by rewrite IH2 // Permutation_middle.
-  Qed.
-  Lemma flatten_cancel e e' ns :
-    cancel ns e = Some e' → flatten e ≡ₚ ns ++ flatten e'.
-  Proof.
-    rewrite /cancel fmap_Some=> -[{e'}-e' [He ->]]; rewrite flatten_prune.
-    revert e' He; induction ns as [|n ns IH]=> e' He; simplify_option_eq; auto.
-    rewrite Permutation_middle -flatten_cancel_go //; eauto.
-  Qed.
-  Lemma cancel_entails Σ e1 e2 e1' e2' ns :
-    cancel ns e1 = Some e1' → cancel ns e2 = Some e2' →
-    (eval Σ e1' ⊢ eval Σ e2') → eval Σ e1 ⊢ eval Σ e2.
-  Proof.
-    intros ??. rewrite !eval_flatten.
-    rewrite (flatten_cancel e1 e1' ns) // (flatten_cancel e2 e2' ns) //; csimpl.
-    rewrite !big_opL_app. apply sep_mono_r.
-  Qed.
-
-  Fixpoint to_expr (l : list nat) : expr :=
-    match l with
-    | [] => EEmp
-    | [n] => EVar n
-    | n :: l => ESep (EVar n) (to_expr l)
-    end.
-  Arguments to_expr !_ / : simpl nomatch.
-  Lemma eval_to_expr Σ l : eval Σ (to_expr l) ⊣⊢ eval_list Σ l.
-  Proof.
-    induction l as [|n1 [|n2 l] IH]; csimpl; rewrite ?right_id //.
-    by rewrite IH.
-  Qed.
-
-  Lemma split_l Σ e ns e' :
-    cancel ns e = Some e' → eval Σ e ⊣⊢ (eval Σ (to_expr ns) ∗ eval Σ e').
-  Proof.
-    intros He%flatten_cancel.
-    by rewrite eval_flatten He big_opL_app eval_to_expr eval_flatten.
-  Qed.
-  Lemma split_r Σ e ns e' :
-    cancel ns e = Some e' → eval Σ e ⊣⊢ (eval Σ e' ∗ eval Σ (to_expr ns)).
-  Proof. intros. rewrite /= comm. by apply split_l. Qed.
-
-  Class Quote (Σ1 Σ2 : list PROP) (P : PROP) (e : expr) := {}.
-  Global Instance quote_True Σ : Quote Σ Σ emp%I EEmp := {}.
-  Global Instance quote_var Σ1 Σ2 P i:
-    rlist.QuoteLookup Σ1 Σ2 P i → Quote Σ1 Σ2 P (EVar i) | 1000 := {}.
-  Global Instance quote_sep Σ1 Σ2 Σ3 P1 P2 e1 e2 :
-    Quote Σ1 Σ2 P1 e1 → Quote Σ2 Σ3 P2 e2 → Quote Σ1 Σ3 (P1 ∗ P2)%I (ESep e1 e2) := {}.
-
-  Class QuoteArgs (Σ : list PROP) (Ps : list PROP) (ns : list nat) := {}.
-  Global Instance quote_args_nil Σ : QuoteArgs Σ nil nil := {}.
-  Global Instance quote_args_cons Σ Ps P ns n :
-    rlist.QuoteLookup Σ Σ P n →
-    QuoteArgs Σ Ps ns → QuoteArgs Σ (P :: Ps) (n :: ns) := {}.
-  End bi_reflection.
-
-  Ltac quote :=
-    match goal with
-    | |- ?P1 ⊢ ?P2 =>
-      lazymatch type of (_ : Quote [] _ P1 _) with Quote _ ?Σ2 _ ?e1 =>
-      lazymatch type of (_ : Quote Σ2 _ P2 _) with Quote _ ?Σ3 _ ?e2 =>
-        change (eval Σ3 e1 ⊢ eval Σ3 e2) end end
-    end.
-  Ltac quote_l :=
-    match goal with
-    | |- ?P1 ⊢ ?P2 =>
-      lazymatch type of (_ : Quote [] _ P1 _) with Quote _ ?Σ2 _ ?e1 =>
-        change (eval Σ2 e1 ⊢ P2) end
-    end.
-End bi_reflection.
-
-Tactic Notation "solve_sep_entails" :=
-  bi_reflection.quote;
-  first
-    [apply bi_reflection.flatten_entails (* for affine BIs *)
-    |apply equiv_entails, bi_reflection.flatten_equiv (* for other BIs *) ];
-  apply (bool_decide_unpack _); vm_compute; exact Logic.I.
-
-Tactic Notation "solve_sep_equiv" :=
-  bi_reflection.quote; apply bi_reflection.flatten_equiv;
-  apply (bool_decide_unpack _); vm_compute; exact Logic.I.
-
-Ltac close_uPreds Ps tac :=
-  let PROP := match goal with |- @bi_entails ?PROP _ _ => PROP end in
-  let rec go Ps Qs :=
-    lazymatch Ps with
-    | [] => let Qs' := eval cbv [reverse rev_append] in (reverse Qs) in tac Qs'
-    | ?P :: ?Ps => find_pat P ltac:(fun Q => go Ps (Q :: Qs))
-    end in
-  (* avoid evars in case Ps = @nil ?A *)
-  try match Ps with [] => unify Ps (@nil PROP) end;
-  go Ps (@nil PROP).
-
-Tactic Notation "cancel" constr(Ps) :=
-  bi_reflection.quote;
-  let Σ := match goal with |- bi_reflection.eval ?Σ _ ⊢ _ => Σ end in
-  let ns' := lazymatch type of (_ : bi_reflection.QuoteArgs Σ Ps _) with
-             | bi_reflection.QuoteArgs _ _ ?ns' => ns'
-             end in
-  eapply bi_reflection.cancel_entails with (ns:=ns');
-    [cbv; reflexivity|cbv; reflexivity|simpl].
-
-Tactic Notation "ecancel" open_constr(Ps) :=
-  close_uPreds Ps ltac:(fun Qs => cancel Qs).
-
-(** [to_front [P1, P2, ..]] rewrites in the premise of ⊢ such that
-    the assumptions P1, P2, ... appear at the front, in that order. *)
-Tactic Notation "to_front" open_constr(Ps) :=
-  close_uPreds Ps ltac:(fun Ps =>
-    bi_reflection.quote_l;
-    let Σ := match goal with |- bi_reflection.eval ?Σ _ ⊢ _ => Σ end in
-    let ns' := lazymatch type of (_ : bi_reflection.QuoteArgs Σ Ps _) with
-               | bi_reflection.QuoteArgs _ _ ?ns' => ns'
-               end in
-    eapply entails_equiv_l;
-      first (apply bi_reflection.split_l with (ns:=ns'); cbv; reflexivity);
-      simpl).
-
-Tactic Notation "to_back" open_constr(Ps) :=
-  close_uPreds Ps ltac:(fun Ps =>
-    bi_reflection.quote_l;
-    let Σ := match goal with |- bi_reflection.eval ?Σ _ ⊢ _ => Σ end in
-    let ns' := lazymatch type of (_ : bi_reflection.QuoteArgs Σ Ps _) with
-               | bi_reflection.QuoteArgs _ _ ?ns' => ns'
-               end in
-    eapply entails_equiv_l;
-      first (apply bi_reflection.split_r with (ns:=ns'); cbv; reflexivity);
-      simpl).
-
-(** [sep_split] is used to introduce a (∗).
-    Use [sep_split left: [P1, P2, ...]] to define which assertions will be
-    taken to the left; the rest will be available on the right.
-    [sep_split right: [P1, P2, ...]] works the other way around. *)
-Tactic Notation "sep_split" "right:" open_constr(Ps) :=
-  to_back Ps; apply sep_mono.
-Tactic Notation "sep_split" "left:" open_constr(Ps) :=
-  to_front Ps; apply sep_mono.
-- 
GitLab