diff --git a/theories/algebra/gmultiset.v b/theories/algebra/gmultiset.v index 576918daaf3c93a40d856673505d6120e58c6452..bd463713475cc7e0bfbbdcb600de60d61f4d627a 100644 --- a/theories/algebra/gmultiset.v +++ b/theories/algebra/gmultiset.v @@ -73,9 +73,10 @@ Section gmultiset. Proof. apply gmultiset_local_update. by rewrite (comm_L _ Y) assoc_L. Qed. Lemma gmultiset_local_update_dealloc X Y X' : - X' ⊆ X → X' ⊆ Y → (X,Y) ~l~> (X ∖ X', Y ∖ X'). + X' ⊆ Y → (X,Y) ~l~> (X ∖ X', Y ∖ X'). Proof. - intros ->%gmultiset_disj_union_difference ->%gmultiset_disj_union_difference. + intros ->%gmultiset_disj_union_difference. apply local_update_total_valid. + intros _ _ ->%gmultiset_included%gmultiset_disj_union_difference. apply gmultiset_local_update. apply gmultiset_eq=> x. repeat (rewrite multiplicity_difference || rewrite multiplicity_disj_union). lia.