From 703718edb667360d1375836aec9608aa130f8caf Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Thu, 8 Jul 2021 00:08:19 +0200 Subject: [PATCH] make atomic_wp mask work more like wp mask --- iris/program_logic/atomic.v | 83 ++++++++++++++------------------ iris_heap_lang/lib/atomic_heap.v | 14 +++--- iris_heap_lang/lib/increment.v | 8 +-- 3 files changed, 48 insertions(+), 57 deletions(-) diff --git a/iris/program_logic/atomic.v b/iris/program_logic/atomic.v index 02a1b3fe2..8feb932af 100644 --- a/iris/program_logic/atomic.v +++ b/iris/program_logic/atomic.v @@ -10,22 +10,24 @@ From iris.prelude Require Import options. example where we want it to be anything else. *) Definition atomic_wp `{!irisGS Λ Σ} {TA TB : tele} (e: expr Λ) (* expression *) - (Eo : coPset) (* (outer) mask *) + (E : coPset) (* *implementation* mask *) (α: TA → iProp Σ) (* atomic pre-condition *) (β: TA → TB → iProp Σ) (* atomic post-condition *) (f: TA → TB → val Λ) (* Turn the return data into the return value *) : iProp Σ := ∀ (Φ : val Λ → iProp Σ), - atomic_update Eo ∅ α β (λ.. x y, Φ (f x y)) -∗ + (* The (outer) user mask is what is left after the implementation + opened its things. *) + atomic_update (⊤∖E) ∅ α β (λ.. x y, Φ (f x y)) -∗ WP e {{ Φ }}. (* Note: To add a private postcondition, use atomic_update α β Eo Ei (λ x y, POST x y -∗ Φ (f x y)) *) -Notation "'<<<' ∀ x1 .. xn , α '>>>' e @ Eo '<<<' ∃ y1 .. yn , β , 'RET' v '>>>'" := +Notation "'<<<' ∀ x1 .. xn , α '>>>' e @ E '<<<' ∃ y1 .. yn , β , 'RET' v '>>>'" := (atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) (TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. )) e%E - Eo + E (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ λ x1, .. (λ xn, α%I) ..) (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ @@ -39,15 +41,15 @@ Notation "'<<<' ∀ x1 .. xn , α '>>>' e @ Eo '<<<' ∃ y1 .. yn , β , 'RET' v (λ y1, .. (λ yn, v%V) .. ) ) .. ) ) - (at level 20, Eo, α, β, v at level 200, x1 binder, xn binder, y1 binder, yn binder, - format "'[hv' '<<<' ∀ x1 .. xn , α '>>>' '/ ' e @ Eo '/' '[ ' '<<<' ∃ y1 .. yn , β , '/' 'RET' v '>>>' ']' ']'") + (at level 20, E, α, β, v at level 200, x1 binder, xn binder, y1 binder, yn binder, + format "'[hv' '<<<' ∀ x1 .. xn , α '>>>' '/ ' e @ E '/' '[ ' '<<<' ∃ y1 .. yn , β , '/' 'RET' v '>>>' ']' ']'") : bi_scope. -Notation "'<<<' ∀ x1 .. xn , α '>>>' e @ Eo '<<<' β , 'RET' v '>>>'" := +Notation "'<<<' ∀ x1 .. xn , α '>>>' e @ E '<<<' β , 'RET' v '>>>'" := (atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) (TB:=TeleO) e%E - Eo + E (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ λ x1, .. (λ xn, α%I) ..) (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ @@ -59,15 +61,15 @@ Notation "'<<<' ∀ x1 .. xn , α '>>>' e @ Eo '<<<' β , 'RET' v '>>>'" := tele_app (TT:=TeleO) v%V ) .. ) ) - (at level 20, Eo, α, β, v at level 200, x1 binder, xn binder, - format "'[hv' '<<<' ∀ x1 .. xn , α '>>>' '/ ' e @ Eo '/' '[ ' '<<<' β , '/' 'RET' v '>>>' ']' ']'") + (at level 20, E, α, β, v at level 200, x1 binder, xn binder, + format "'[hv' '<<<' ∀ x1 .. xn , α '>>>' '/ ' e @ E '/' '[ ' '<<<' β , '/' 'RET' v '>>>' ']' ']'") : bi_scope. -Notation "'<<<' α '>>>' e @ Eo '<<<' ∃ y1 .. yn , β , 'RET' v '>>>'" := +Notation "'<<<' α '>>>' e @ E '<<<' ∃ y1 .. yn , β , 'RET' v '>>>'" := (atomic_wp (TA:=TeleO) (TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. )) e%E - Eo + E (tele_app (TT:=TeleO) α%I) (tele_app (TT:=TeleO) $ tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. )) @@ -76,21 +78,21 @@ Notation "'<<<' α '>>>' e @ Eo '<<<' ∃ y1 .. yn , β , 'RET' v '>>>'" := tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. )) (λ y1, .. (λ yn, v%V) .. )) ) - (at level 20, Eo, α, β, v at level 200, y1 binder, yn binder, - format "'[hv' '<<<' α '>>>' '/ ' e @ Eo '/' '[ ' '<<<' ∃ y1 .. yn , β , '/' 'RET' v '>>>' ']' ']'") + (at level 20, E, α, β, v at level 200, y1 binder, yn binder, + format "'[hv' '<<<' α '>>>' '/ ' e @ E '/' '[ ' '<<<' ∃ y1 .. yn , β , '/' 'RET' v '>>>' ']' ']'") : bi_scope. -Notation "'<<<' α '>>>' e @ Eo '<<<' β , 'RET' v '>>>'" := +Notation "'<<<' α '>>>' e @ E '<<<' β , 'RET' v '>>>'" := (atomic_wp (TA:=TeleO) (TB:=TeleO) e%E - Eo + E (tele_app (TT:=TeleO) α%I) (tele_app (TT:=TeleO) $ tele_app (TT:=TeleO) β%I) (tele_app (TT:=TeleO) $ tele_app (TT:=TeleO) v%V) ) - (at level 20, Eo, α, β, v at level 200, - format "'[hv' '<<<' α '>>>' '/ ' e @ Eo '/' '[ ' '<<<' β , '/' 'RET' v '>>>' ']' ']'") + (at level 20, E, α, β, v at level 200, + format "'[hv' '<<<' α '>>>' '/ ' e @ E '/' '[ ' '<<<' β , '/' 'RET' v '>>>' ']' ']'") : bi_scope. (** Theory *) @@ -99,16 +101,9 @@ Section lemmas. Notation iProp := (iProp Σ). Implicit Types (α : TA → iProp) (β : TA → TB → iProp) (f : TA → TB → val Λ). - Lemma atomic_wp_mask_weaken e Eo1 Eo2 α β f : - Eo2 ⊆ Eo1 → atomic_wp e Eo1 α β f -∗ atomic_wp e Eo2 α β f. - Proof. - iIntros (HEo) "Hwp". iIntros (Φ) "AU". iApply "Hwp". - iApply atomic_update_mask_weaken; last done. done. - Qed. - (* Atomic triples imply sequential triples if the precondition is laterable. *) - Lemma atomic_wp_seq e Eo α β f {HL : ∀.. x, Laterable (α x)} : - atomic_wp e Eo α β f -∗ + Lemma atomic_wp_seq e E α β f {HL : ∀.. x, Laterable (α x)} : + atomic_wp e E α β f -∗ ∀ Φ, ∀.. x, α x -∗ (∀.. y, β x y -∗ Φ (f x y)) -∗ WP e {{ Φ }}. Proof. rewrite ->tforall_forall in HL. iIntros "Hwp" (Φ x) "Hα HΦ". @@ -120,9 +115,9 @@ Section lemmas. (** This version matches the Texan triple, i.e., with a later in front of the [(∀.. y, β x y -∗ Φ (f x y))]. *) - Lemma atomic_wp_seq_step e Eo α β f {HL : ∀.. x, Laterable (α x)} : + Lemma atomic_wp_seq_step e E α β f {HL : ∀.. x, Laterable (α x)} : TCEq (to_val e) None → - atomic_wp e Eo α β f -∗ + atomic_wp e E α β f -∗ ∀ Φ, ∀.. x, α x -∗ ▷ (∀.. y, β x y -∗ Φ (f x y)) -∗ WP e {{ Φ }}. Proof. iIntros (?) "H"; iIntros (Φ x) "Hα HΦ". @@ -133,9 +128,9 @@ Section lemmas. Qed. (* Sequential triples with the empty mask for a physically atomic [e] are atomic. *) - Lemma atomic_seq_wp_atomic e Eo α β f `{!Atomic WeaklyAtomic e} : + Lemma atomic_seq_wp_atomic e E α β f `{!Atomic WeaklyAtomic e} : (∀ Φ, ∀.. x, α x -∗ (∀.. y, β x y -∗ Φ (f x y)) -∗ WP e @ ∅ {{ Φ }}) -∗ - atomic_wp e Eo α β f. + atomic_wp e E α β f. Proof. iIntros "Hwp" (Φ) "AU". iMod "AU" as (x) "[Hα [_ Hclose]]". iApply ("Hwp" with "Hα"). iIntros (y) "Hβ". @@ -145,10 +140,10 @@ Section lemmas. (** Sequential triples with a persistent precondition and no initial quantifier are atomic. *) - Lemma persistent_seq_wp_atomic e Eo (α : [tele] → iProp) (β : [tele] → TB → iProp) + Lemma persistent_seq_wp_atomic e E (α : [tele] → iProp) (β : [tele] → TB → iProp) (f : [tele] → TB → val Λ) {HP : Persistent (α [tele_arg])} : (∀ Φ, α [tele_arg] -∗ (∀.. y, β [tele_arg] y -∗ Φ (f [tele_arg] y)) -∗ WP e {{ Φ }}) -∗ - atomic_wp e Eo α β f. + atomic_wp e E α β f. Proof. simpl in HP. iIntros "Hwp" (Φ) "HΦ". iApply fupd_wp. iMod ("HΦ") as "[#Hα [Hclose _]]". iMod ("Hclose" with "Hα") as "HΦ". @@ -158,26 +153,22 @@ Section lemmas. rewrite ->!tele_app_bind. done. Qed. - (** The polarity of [Eo] is the opposite of what one might expect: if you have - an atomic triple with some mask, you can always *shrink* that mask. *) - Lemma wp_atomic_mask e Eo1 Eo2 α β f : - Eo2 ⊆ Eo1 → - atomic_wp e Eo1 α β f -∗ - atomic_wp e Eo2 α β f. + Lemma atomic_wp_mask_weaken e E1 E2 α β f : + E1 ⊆ E2 → atomic_wp e E1 α β f -∗ atomic_wp e E2 α β f. Proof. - intros ?. iIntros "Hwp" (Φ) "AU". iApply "Hwp". - iApply atomic_update_mask_weaken; done. + iIntros (HE) "Hwp". iIntros (Φ) "AU". iApply "Hwp". + iApply atomic_update_mask_weaken; last done. set_solver. Qed. (** We can open invariants around atomic triples. (Just for demonstration purposes; we always use [iInv] in proofs.) *) - Lemma wp_atomic_inv e Eo α β f N I : - ↑N ⊆ Eo → - atomic_wp e Eo (λ.. x, ▷ I ∗ α x) (λ.. x y, ▷ I ∗ β x y) f -∗ - inv N I -∗ atomic_wp e (Eo ∖ ↑N) α β f. + Lemma atomic_wp_inv e E α β f N I : + ↑N ⊆ E → + atomic_wp e (E ∖ ↑N) (λ.. x, ▷ I ∗ α x) (λ.. x y, ▷ I ∗ β x y) f -∗ + inv N I -∗ atomic_wp e E α β f. Proof. intros ?. iIntros "Hwp #Hinv" (Φ) "AU". iApply "Hwp". iAuIntro. - iInv N as "HI". iApply (aacc_aupd with "AU"); first done. + iInv N as "HI". iApply (aacc_aupd with "AU"); first solve_ndisj. iIntros (x) "Hα". iAaccIntro with "[HI Hα]"; rewrite ->!tele_app_bind; first by iFrame. - (* abort *) iIntros "[HI $]". by eauto with iFrame. diff --git a/iris_heap_lang/lib/atomic_heap.v b/iris_heap_lang/lib/atomic_heap.v index 302215a8a..af057db21 100644 --- a/iris_heap_lang/lib/atomic_heap.v +++ b/iris_heap_lang/lib/atomic_heap.v @@ -29,9 +29,9 @@ Class atomic_heap {Σ} `{!heapGS Σ} := AtomicHeap { free_spec (l : loc) (v : val) : {{{ mapsto l (DfracOwn 1) v }}} free #l {{{ l, RET #l; True }}}; load_spec (l : loc) : - ⊢ <<< ∀ (v : val) q, mapsto l q v >>> load #l @ ⊤ <<< mapsto l q v, RET v >>>; + ⊢ <<< ∀ (v : val) q, mapsto l q v >>> load #l @ ∅ <<< mapsto l q v, RET v >>>; store_spec (l : loc) (w : val) : - ⊢ <<< ∀ v, mapsto l (DfracOwn 1) v >>> store #l w @ ⊤ + ⊢ <<< ∀ v, mapsto l (DfracOwn 1) v >>> store #l w @ ∅ <<< mapsto l (DfracOwn 1) w, RET #() >>>; (* This spec is slightly weaker than it could be: It is sufficient for [w1] *or* [v] to be unboxed. However, by writing it this way the [val_is_unboxed] @@ -41,7 +41,7 @@ Class atomic_heap {Σ} `{!heapGS Σ} := AtomicHeap { [destruct (decide (a = b))] and it will simplify in both places. *) cmpxchg_spec (l : loc) (w1 w2 : val) : val_is_unboxed w1 → - ⊢ <<< ∀ v, mapsto l (DfracOwn 1) v >>> cmpxchg #l w1 w2 @ ⊤ + ⊢ <<< ∀ v, mapsto l (DfracOwn 1) v >>> cmpxchg #l w1 w2 @ ∅ <<< if decide (v = w1) then mapsto l (DfracOwn 1) w2 else mapsto l (DfracOwn 1) v, RET (v, #if decide (v = w1) then true else false) >>>; }. @@ -75,7 +75,7 @@ Section derived. Lemma cas_spec (l : loc) (w1 w2 : val) : val_is_unboxed w1 → - ⊢ <<< ∀ v, mapsto l (DfracOwn 1) v >>> CAS #l w1 w2 @ ⊤ + ⊢ <<< ∀ v, mapsto l (DfracOwn 1) v >>> CAS #l w1 w2 @ ∅ <<< if decide (v = w1) then mapsto l (DfracOwn 1) w2 else mapsto l (DfracOwn 1) v, RET #if decide (v = w1) then true else false >>>. Proof. @@ -114,7 +114,7 @@ Section proof. Qed. Lemma primitive_load_spec (l : loc) : - ⊢ <<< ∀ (v : val) q, l ↦{q} v >>> primitive_load #l @ ⊤ + ⊢ <<< ∀ (v : val) q, l ↦{q} v >>> primitive_load #l @ ∅ <<< l ↦{q} v, RET v >>>. Proof. iIntros (Φ) "AU". wp_lam. @@ -123,7 +123,7 @@ Section proof. Qed. Lemma primitive_store_spec (l : loc) (w : val) : - ⊢ <<< ∀ v, l ↦ v >>> primitive_store #l w @ ⊤ + ⊢ <<< ∀ v, l ↦ v >>> primitive_store #l w @ ∅ <<< l ↦ w, RET #() >>>. Proof. iIntros (Φ) "AU". wp_lam. wp_let. @@ -134,7 +134,7 @@ Section proof. Lemma primitive_cmpxchg_spec (l : loc) (w1 w2 : val) : val_is_unboxed w1 → ⊢ <<< ∀ (v : val), l ↦ v >>> - primitive_cmpxchg #l w1 w2 @ ⊤ + primitive_cmpxchg #l w1 w2 @ ∅ <<< if decide (v = w1) then l ↦ w2 else l ↦ v, RET (v, #if decide (v = w1) then true else false) >>>. Proof. diff --git a/iris_heap_lang/lib/increment.v b/iris_heap_lang/lib/increment.v index bf82e9b84..3f166ca57 100644 --- a/iris_heap_lang/lib/increment.v +++ b/iris_heap_lang/lib/increment.v @@ -21,7 +21,7 @@ Section increment_physical. else "incr" "l". Lemma incr_phy_spec (l: loc) : - ⊢ <<< ∀ (v : Z), l ↦ #v >>> incr_phy #l @ ⊤ <<< l ↦ #(v + 1), RET #v >>>. + ⊢ <<< ∀ (v : Z), l ↦ #v >>> incr_phy #l @ ∅ <<< l ↦ #(v + 1), RET #v >>>. Proof. iIntros (Φ) "AU". iLöb as "IH". wp_lam. wp_bind (!_)%E. iMod "AU" as (v) "[Hl [Hclose _]]". @@ -52,7 +52,7 @@ Section increment. (** A proof of the incr specification that unfolds the definition of atomic accessors. This is the style that most logically atomic proofs take. *) Lemma incr_spec_direct (l: loc) : - ⊢ <<< ∀ (v : Z), l ↦ #v >>> incr #l @ ⊤ <<< l ↦ #(v + 1), RET #v >>>. + ⊢ <<< ∀ (v : Z), l ↦ #v >>> incr #l @ ∅ <<< l ↦ #(v + 1), RET #v >>>. Proof. iIntros (Φ) "AU". iLöb as "IH". wp_lam. awp_apply load_spec. @@ -91,7 +91,7 @@ Section increment. prove are in 1:1 correspondence; most logically atomic proofs will not be able to use them. *) Lemma incr_spec (l: loc) : - ⊢ <<< ∀ (v : Z), l ↦ #v >>> incr #l @ ⊤ <<< l ↦ #(v + 1), RET #v >>>. + ⊢ <<< ∀ (v : Z), l ↦ #v >>> incr #l @ ∅ <<< l ↦ #(v + 1), RET #v >>>. Proof. iIntros (Φ) "AU". iLöb as "IH". wp_lam. awp_apply load_spec. @@ -126,7 +126,7 @@ Section increment. Lemma weak_incr_spec (l: loc) (v : Z) : l ↦{#1/2} #v -∗ <<< ∀ (v' : Z), l ↦{#1/2} #v' >>> - weak_incr #l @ ⊤ + weak_incr #l @ ∅ <<< ⌜v = v'⌠∗ l ↦ #(v + 1), RET #v >>>. Proof. iIntros "Hl" (Φ) "AU". wp_lam. -- GitLab