From 6019fde60a9d68d271f767ee504dc130b2a604ed Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Tue, 12 May 2020 13:33:21 +0200 Subject: [PATCH] tweak wording --- theories/program_logic/ectx_language.v | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/theories/program_logic/ectx_language.v b/theories/program_logic/ectx_language.v index 0e0c1475e..417bc5615 100644 --- a/theories/program_logic/ectx_language.v +++ b/theories/program_logic/ectx_language.v @@ -35,7 +35,7 @@ Section ectx_language_mixin. [K'']. In particular, this implies [e1 = fill K'' e1'] by [fill_inj], i.e., [e1] contains the head redex.) - This implies there can always be only one head redex, see + This implies there can be only one head redex, see [head_redex_unique]. *) mixin_step_by_val K K' e1 e1' σ1 κ e2 σ2 efs : fill K e1 = fill K' e1' → @@ -158,10 +158,11 @@ Section ectx_language. Lemma not_head_reducible e σ : ¬head_reducible e σ ↔ head_irreducible e σ. Proof. unfold head_reducible, head_irreducible. naive_solver. Qed. - (** Head redices are unique. In all sensible instances, [comp_ectx K' - empty_ectx] will be the same as [K'], so the conclusion is [K = K' ∧ e = - e'], but we do not require a law to actually prove that so we cannot use - that fact here. *) + (** The decomposition into head redex and context is unique. + + In all sensible instances, [comp_ectx K' empty_ectx] will be the same as + [K'], so the conclusion is [K = K' ∧ e = e'], but we do not require a law + to actually prove that so we cannot use that fact here. *) Lemma head_redex_unique K K' e e' σ : fill K e = fill K' e' → head_reducible e σ → -- GitLab