From 5bdb226be6fc051ce21efb0ff6816bbd78d54b4e Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Thu, 13 Jun 2019 14:48:41 +0200 Subject: [PATCH] re-do adequacy section --- docs/iris.sty | 2 +- docs/program-logic.tex | 130 +++++++++++++++++++++++++---------------- 2 files changed, 82 insertions(+), 50 deletions(-) diff --git a/docs/iris.sty b/docs/iris.sty index 702c2203b..80cd264d3 100644 --- a/docs/iris.sty +++ b/docs/iris.sty @@ -293,7 +293,7 @@ % Two masks \tensor*[^{#1}]{#2}{^{#3}} }% - }}% + \kern0.2ex}}% \NewDocumentCommand \vs {O{} O{}} {\vsGen[#1]{\Rrightarrow}[#2]} \NewDocumentCommand \bvs {O{} O{}} {\vsGen[#1]{\dispdot[0.02ex]{\Rrightarrow}}[#2]} \NewDocumentCommand \vsL {O{} O{}} {\vsGen[#1]{\Lleftarrow}[#2]} diff --git a/docs/program-logic.tex b/docs/program-logic.tex index 89d91f0be..57ef2a751 100644 --- a/docs/program-logic.tex +++ b/docs/program-logic.tex @@ -224,76 +224,108 @@ This basically just copies the second branch (the non-value case) of the definit \paragraph{Adequacy of weakest precondition.} -\newcommand\traceprop{\Sigma} +\newcommand\metaprop{p} +\newcommand\consstate{C} The purpose of the adequacy statement is to show that our notion of weakest preconditions is \emph{realistic} in the sense that it actually has anything to do with the actual behavior of the program. -The most general form of the adequacy statement is about proving properties of arbitrary program executions. -That is, the goal is to prove a statement of the form -\[ -\All \expr_0, \state_0, \vec\obs, \tpool_1, \state_1. ([\expr_0], \state_0) \tpsteps[\vec\obs] (\tpool_1, \state_1) \Ra (\expr_0, \state_0, \vec\obs, \tpool_1, \state_1) \in \traceprop -\] -for some \emph{meta-level} relation $\traceprop$ characterizing the ``trace property'' we are interested in. +The most general form of the adequacy statement is about proving properties of an arbitrary program execution. -To state the adequacy theorem, we need a way to talk about $\traceprop$ inside Iris. -To this end, we assume that the signature $\Sig$ contains some predicate $\hat{\traceprop}$: -\[ \hat{\traceprop} : \Expr \times \State \times \List(\Obs) \times \List(\Expr) \times \State \to \Prop \in \SigFn \] -Furthermore, we assume that the \emph{interpretation} $\Sem{\hat{\traceprop}}$ of $\hat{\traceprop}$ reflects $\traceprop$ (also see \Sref{sec:model}): +\begin{thm}[Adequacy] + Assume we are given some $\expr_0$, $\state_0$, $\vec\obs$, $\tpool_1$, $\state_1$ such that $([\expr_0], \state_0) \tpsteps[\vec\obs] (\tpool_1, \state_1)$, and we are also given a \emph{meta-level} property $\metaprop$ that we want to show. + To verify that $\metaprop$ holds, it is sufficient to show the following Iris entailment: +\begin{align*} + &\TRUE \proves \pvs[\top] \Exists \stuckness, \stateinterp, \pred, \pred_F. \stateinterp(\state_0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_0}[\stuckness;\top]{x.\; \pred(x)} * \left(\consstate^{\stateinterp;\pred;\pred_F}_{\stuckness}(\tpool_1, \state_1) \vs[\top][\emptyset] \hat{\metaprop}\right) +\end{align*} +where +\begin{align*} + \consstate^{\stateinterp;\pred;\pred_F}_{\stuckness}(\tpool_1, \state_1) \eqdef{}&\Exists \expr_1, \tpool_1'. \tpool_1 = [\expr_1] \dplus \tpool_1' * {}\\ + &\quad (s = \NotStuck \Ra \All \expr \in \tpool_1. \toval(\expr) \neq \bot \lor \red(\expr, \state_1) ) *{}\\ + &\quad \stateinterp(\state_1, (), |\tpool_1'|) *{}\\ + &\quad (\toval(\expr_1) \ne \bot \wand \pred(\toval(\expr_1))) *{}\\ + &\quad \left(\Sep[\expr \in \tpool_1'] \toval(\expr) \ne \bot \wand \pred_F(\toval(\expr))\right) +\end{align*} +The $\hat\metaprop$ here arises because we need a way to talk about $\metaprop$ inside Iris. +To this end, we assume that the signature $\Sig$ contains some assertion $\hat{\metaprop}$: +\[ \hat{\metaprop} : \Prop \in \SigFn \] +Furthermore, we assume that the \emph{interpretation} $\Sem{\hat{\metaprop}}$ of $\hat{\metaprop}$ reflects $\metaprop$ (also see \Sref{sec:model}): \[\begin{array}{rMcMl} - \Sem{\hat{\traceprop}} &:& \Sem{\Expr \times \State \times \List(\Obs) \times \List(\Expr) \times \State\,} \nfn \Sem\Prop \\ - \Sem{\hat{\traceprop}} &\eqdef& \Lam (\expr_0, \state_0, \vec\obs, \tpool_1, \state_1). \Lam \any. \setComp{n}{(\expr_0, \state_0, \vec\obs, \tpool_1, \state_1) \in \traceprop} + \Sem{\hat{\metaprop}} &:& \Sem\Prop \\ + \Sem{\hat{\metaprop}} &\eqdef& \Lam \any. \setComp{n}{\metaprop} \end{array}\] -The signature can of course state arbitrary additional properties of $\hat{\traceprop}$, as long as they are proven sound. +The signature can of course state arbitrary additional properties of $\hat{\metaprop}$, as long as they are proven sound. +\end{thm} -The adequacy statement now reads as follows: -\begin{align*} - &\All \expr_0, \state_0, \vec\obs, \tpool_1, \state_1.\\ - &( \TRUE \proves \pvs[\top] \Exists \stuckness, \stateinterp, \pred_F, \pred. {}\\ - &\quad\stateinterp(\state_0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_0}[\stuckness;\top]{x.\; \pred(x)} * {}\\ - &\quad(\All \expr_1, \tpool_1'. \tpool_1 = [\expr_1] \dplus \tpool_1' \wand {}\\ - &\quad\quad (s = \NotStuck \Ra \All \expr \in \tpool_1. \toval(\expr) \neq \bot \lor \red(\expr, \state_1) ) \wand {}\\ - &\quad\quad \stateinterp(\state_1, (), |\tpool_1'|) \wand{}\\ - &\quad\quad (\toval(\expr_1) \ne \bot \wand \pred(\toval(\expr_1))) \wand{}\\ - &\quad\quad (\Sep[\expr \in \tpool_1'] \toval(\expr) \ne \bot \wand \pred_F(\toval(\expr))) \wand{}\\ - &\quad\quad \pvs[\top,\emptyset] \hat{\traceprop}(\expr_0, \state_0, \vec\obs, \tpool_1, \state_1) \\ - &\quad ) \Ra{}\\ - &([\expr_0], \state_0) \tpsteps[\vec\obs] (\tpool_1, \state_1) \Ra (\expr_0, \state_0, \vec\obs, \tpool_1, \state_1) \in \traceprop -\end{align*} -In other words, to show that $\traceprop$ holds for all possible executions of the program, we have to prove an entailment in Iris that, starting from the empty context, proves that the initial state interpretation holds, proves a weakest precondition, \emph{and} proves that $\hat{\traceprop}$ holds under the following assumptions: +In other words, to show that $\metaprop$ holds, we have to prove an entailment in Iris that, starting from the empty context, chooses some state interpretation, postcondition, forked-thread postcondition and stuckness and then proves: +\begin{itemize} + \item the initial state interpretation, + \item a weakest-precondition, + \item and a view shift showing the desired $\hat\metaprop$ under the extra assumption $\consstate(\tpool_1, \state_1)$. +\end{itemize} +Notice that the state interpretation and the postconditions are chosen \emph{after} doing a fancy update, which allows them to depend on the names of ghost variables that are picked in that initial fancy update. +This gives us a chance to allocate some ``global'' ghost state that state interpretation and postcondition can refer to. + +$\consstate^{\stateinterp;\pred;\pred_F}_{\stuckness}(\tpool_1, \state_1)$ says that: \begin{itemize} -\item The final thread-pool $\tpool_1$ contains the final state of the main thread $\expr_1$, and any number of additional threads in $\tpool_1'$. +\item The final thread-pool $\tpool_1$ contains the final state of the main thread $\expr_1$, and any number of additional forked threads in $\tpool_1'$. \item If this is a stuck-free weakest precondition, then all threads in the final thread-pool are either values or are reducible in the final state $\state_1$. -\item The state interpretation holds for the final state. +\item The state interpretation $\stateinterp$ holds for the final state. \item If the main thread reduced to a value, the post-condition $\pred$ of the weakest precondition holds for that value. \item If any other thread reduced to a value, the forked-thread post-condition $\pred_F$ holds for that value. \end{itemize} -Notice also that the adequacy statement quantifies over the program trace only once, so it can be easily specialized to, say, some particular initial state $\state_0$. -This lets us show properties that only hold for some executions. -Furthermore, the state invariant $S$ used by the weakest precondition is chosen \emph{after} doing a fancy update, which allows it to depend on the names of ghost variables that are picked in that initial fancy update. -As an example for how to use this adequacy theorem, let us say we wanted to prove that a program $\expr_0$ for which we derived a $\NotStuck$ weakest-precondition cannot get stuck. -We would pick -\[ -\traceprop(\expr_0, \state_0, \vec\obs, \tpool_1, \state_1) \eqdef \All \expr \in \tpool_1. \toval(\expr) \neq \bot \lor \red(\expr, \state_1) -\] -and we would show the following in Iris: +~\par + +As an example for how to use this adequacy theorem, let us say we wanted to prove that a program $\expr_0$ for which we derived a $\NotStuck$ weakest-precondition cannot get stuck: +\begin{cor}[Stuck-freedom] + Assume we are given some $\expr_0$ such that the following holds: \[ -\TRUE \proves \All \state_0, \vec\obs. \pvs[\top] \Exists \stateinterp, \pred_F, \pred. \stateinterp(\state_0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_0}[\NotStuck;\top]{x.\; \pred(x)} +\TRUE \proves \All\state_0, \vec\obs. \pvs[\top] \Exists \stateinterp, \pred, \pred_F. \stateinterp(\state_0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_0}[\NotStuck;\top]{x.\; \pred(x)} \] -The adequacy theorem would then give us: + Then it is the case that: \[ \All \state_0, \vec\obs, \tpool_1, \state_1. ([\expr_0], \state_0) \tpsteps[\vec\obs] (\tpool_1, \state_1) \Ra \All \expr \in \tpool_1. \toval(\expr) \neq \bot \lor \red(\expr, \state_1) \] +\end{cor} +To prove the conclusion of this corollary, we assume some $\state_0, \vec\obs, \tpool_1, \state_1$ and $([\expr_0], \state_0) \tpsteps[\vec\obs] (\tpool_1, \state_1)$, and we instantiate the main theorem with this execution and $\metaprop \eqdef \All \expr \in \tpool_1. \toval(\expr) \neq \bot \lor \red(\expr, \state_1)$. +We can then show the premise of adequacy using the Iris entailment that we assumed in the corollary and: +\[ \TRUE \proves \consstate^{\stateinterp;\pred;\pred_F}_{\stuckness}(\tpool_1, \state_1) \vs[\top][\emptyset] \metaprop \] +This proof, just like the following, also exploits that we can freely swap between meta-level universal quantification ($\All x. \TRUE \proves \prop$) and quantification in Iris ($\TRUE \proves \All x. \prop$). + +~\par -Similarly, if we wanted to show that the final value of the main thread is always in some set $V \subseteq \Val$, we could pick +Similarly we could show that the postcondition makes adequate statements about the possible final value of the main thread: +\begin{cor}[Adequate postcondition] + Assume we are given some $\expr_0$ and a set $V \subseteq \Val$ such that the following holds (assuming we can talk about sets like $V$ inside the logic): \[ -\traceprop(\expr_0, \state_0, \vec\obs, \tpool_1, \state_1) \eqdef \All\val_1, \tpool_1'. \tpool_1 = [\ofval(\val_1)] \dplus \tpool_1' \Ra \val_1 \in \Val +\TRUE \proves \All\state_0, \vec\obs. \pvs[\top] \Exists \stuckness, \stateinterp, \pred_F. \stateinterp(\state_0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_0}[\stuckness;\top]{x.\; x \in V} \] -and then we could derive the following from the main adequacy theorem: -\begin{align*} - &(\TRUE \proves \All\state_0, \vec\obs. \pvs[\top] \Exists \stuckness, \stateinterp, \pred_F. \stateinterp(\state_0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_0}[\stuckness;\top]{x.\; x \in V}) \Ra{}\\ - &\All \state_0, \vec\obs, \val_1, \tpool_1, \state_1. ([\expr_0], \state_0) \tpsteps[\vec\obs] ([\ofval(\val_1)] \dplus \tpool_1, \state_1) \Ra \val_1 \in V -\end{align*} + Then it is the case that: +\[ +\All \state_0, \vec\obs, \val_1, \tpool_1, \state_1. ([\expr_0], \state_0) \tpsteps[\vec\obs] ([\ofval(\val_1)] \dplus \tpool_1, \state_1) \Ra \val_1 \in V +\] +\end{cor} +To show this, we assume some $\state_0, \vec\obs, \val_1, \tpool_1, \state_1$ such that $([\expr_0], \state_0) \tpsteps[\vec\obs] ([\ofval(\val_1)] \dplus \tpool_1, \state_1)$, and we instantiate adequacy with this execution and $\metaprop \eqdef \val_1 \in \Val$. +Then we only have to show: +$$\TRUE \proves \consstate^{\stateinterp;(\Lam \val. \val \in \Val);\pred_F}_{\stuckness}([\ofval(\val_1)] \dplus \tpool_1, \state_1) \vs[\top][\emptyset] \val_1 \in \Val $$ + +~\par +As a final example, we could use adequacy to show that the state $\state$ of the program is always in some set $\Sigma \subseteq \State$: +\begin{cor}[Adequate state interpretation] + Assume we are given some $\expr_0$ and a set $\Sigma \subseteq \State$ such that the following holds (assuming we can talk about sets like $\Sigma$ inside the logic): +\[ +\TRUE \proves \All\state_0, \vec\obs. \pvs[\top] \Exists \stuckness, \stateinterp, \pred, \pred_F. \stateinterp(\state_0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_0}[\stuckness;\top]{\pred} * (\All \state_1, m. \stateinterp(\state_1,(),m) \!\vs[\top][\emptyset] \state_1 \in \Sigma) +\] + Then it is the case that: +\[ +\All \state_0, \vec\obs, \tpool_1, \state_1. ([\expr_0], \state_0) \tpsteps[\vec\obs] (\tpool_1, \state_1) \Ra \state_1 \in \Sigma +\] +\end{cor} +To show this, we assume some $\state_0, \vec\obs, \tpool_1, \state_1$ such that $([\expr_0], \state_0) \tpsteps[\vec\obs] (\tpool_1, \state_1)$, and we instantiate adequacy with this execution and $\metaprop \eqdef \state_1 \in \Sigma$. +Then we have to show: +\[ +(\All \state_1, m. \stateinterp(\state_1,(),m) \!\vs[\top][\emptyset] \state_1 \in \Sigma) \proves \consstate^{\stateinterp;\pred;\pred_F}_{\stuckness}(\tpool_1, \state_1) \vs[\top][\emptyset] \state_1 \in \Sigma +\] \paragraph{Hoare triples.} It turns out that weakest precondition is actually quite convenient to work with, in particular when performing these proofs in Coq. -- GitLab