diff --git a/CHANGELOG.md b/CHANGELOG.md index ae60bff1122111e92065be9bbf05ffb35014e043..2092181bedb570e9ef5864ff6cf716c113a6fb9b 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -48,6 +48,9 @@ With this release, we dropped support for Coq 8.9. * Allow framing below an `<affine>` modality if the hypothesis that is framed is affine. (Previously, framing below `<affine>` was only possible if the hypothesis that is framed resides in the intuitionistic context.) +* Remove the laws `pure_forall_2 : (∀ a, ⌜ φ a âŒ) ⊢ ⌜ ∀ a, φ a âŒ` from the BI + interface and factor it into a type class `BiPureForall`. +* Add notation `¬ P` for `P → False` to `bi_scope`. **Changes in `base_logic`:** diff --git a/tests/heapprop.v b/tests/heapprop.v index e9c0405a23b5c4c38932b98b6e8d2bd7627f9565..9019204c8ca8bde4177a17aebca84d019cc41c7c 100644 --- a/tests/heapprop.v +++ b/tests/heapprop.v @@ -149,8 +149,6 @@ Section mixins. unseal=> φ P ?; by split. - (* [(φ → True ⊢ P) → ⌜ φ ⌠⊢ P] *) unseal=> φ P HP; split=> σ ?. by apply HP. - - (* [(∀ a, ⌜ φ a âŒ) ⊢ ⌜ ∀ a, φ a âŒ] *) - unseal=> A φ; by split. - (* [P ∧ Q ⊢ P] *) unseal=> P Q; split=> σ [??]; done. - (* [P ∧ Q ⊢ Q] *) @@ -222,6 +220,9 @@ Canonical Structure heapPropI : bi := {| bi_ofe_mixin := ofe_mixin_of heapProp; bi_bi_mixin := heapProp_bi_mixin; bi_bi_later_mixin := heapProp_bi_later_mixin |}. +Instance heapProp_pure_forall : BiPureForall heapPropI. +Proof. intros A φ. rewrite /bi_forall /bi_pure /=. unseal. by split. Qed. + Lemma heapProp_proofmode_test {A} (P Q R : heapProp) (Φ Ψ : A → heapProp) : P ∗ Q -∗ â–¡ R -∗ diff --git a/tests/proofmode.v b/tests/proofmode.v index fd2bbae5b13a7dc40e615956f143a5c40091c644..a7c3a1dc43aa303eef66c3aef6fccca945a075b1 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -215,7 +215,7 @@ Proof. Show. auto. Qed. -Lemma test_iIntros_pure_not : ⊢@{PROP} ⌜ ¬False âŒ. +Lemma test_iIntros_pure_not `{!BiPureForall PROP} : ⊢@{PROP} ⌜ ¬False âŒ. Proof. by iIntros (?). Qed. Lemma test_fast_iIntros `{!BiInternalEq PROP} P Q : diff --git a/tests/telescopes.v b/tests/telescopes.v index 10807e8566d4d55068802886a6f008481f53ebf0..897592b185c66ebcfe74a977f9d3c7454643a6be 100644 --- a/tests/telescopes.v +++ b/tests/telescopes.v @@ -27,7 +27,7 @@ Section basic_tests. Lemma test_pure_texist {TT : tele} (φ : TT → Prop) : (∃.. x, ⌜ φ x âŒ) -∗ ∃.. x, ⌜ φ x ⌠: PROP. Proof. iIntros (H) "!%". done. Qed. - Lemma test_pure_tforall {TT : tele} (φ : TT → Prop) : + Lemma test_pure_tforall `{!BiPureForall PROP} {TT : tele} (φ : TT → Prop) : (∀.. x, ⌜ φ x âŒ) -∗ ∀.. x, ⌜ φ x ⌠: PROP. Proof. iIntros (H) "!%". done. Qed. Lemma test_pure_tforall_persistent {TT : tele} (Φ : TT → PROP) : diff --git a/theories/base_logic/bi.v b/theories/base_logic/bi.v index 80779bb166483f2d2cd91e59eeec8caa6ec39f8f..261641c77fcd502e479723dfb4caff195b0c749f 100644 --- a/theories/base_logic/bi.v +++ b/theories/base_logic/bi.v @@ -30,7 +30,6 @@ Proof. - exact: persistently_ne. - exact: pure_intro. - exact: pure_elim'. - - exact: @pure_forall_2. - exact: and_elim_l. - exact: and_elim_r. - exact: and_intro. @@ -90,6 +89,9 @@ Canonical Structure uPredI (M : ucmraT) : bi := bi_bi_mixin := uPred_bi_mixin M; bi_bi_later_mixin := uPred_bi_later_mixin M |}. +Instance uPred_pure_forall M : BiPureForall (uPredI M). +Proof. exact: @pure_forall_2. Qed. + Instance uPred_later_contractive {M} : BiLaterContractive (uPredI M). Proof. apply later_contractive. Qed. diff --git a/theories/bi/ascii.v b/theories/bi/ascii.v index 159f0b964a07c0fb761f84afc934f1f3048b1cee..52ec4bebf2dd7d0fab0891695108aac0bb37336b 100644 --- a/theories/bi/ascii.v +++ b/theories/bi/ascii.v @@ -31,6 +31,8 @@ Notation "(/\)" := bi_and (only parsing) : bi_scope. Notation "P \/ Q" := (P ∨ Q)%I (only parsing) : bi_scope. Notation "(\/)" := bi_or (only parsing) : bi_scope. Notation "P -> Q" := (P → Q)%I (only parsing) : bi_scope. +Notation "~ P" := (P → False)%I (only parsing) : bi_scope. + Notation "P ** Q" := (P ∗ Q)%I (at level 80, right associativity, only parsing) : bi_scope. Notation "(**)" := bi_sep (only parsing) : bi_scope. diff --git a/theories/bi/derived_connectives.v b/theories/bi/derived_connectives.v index f75bddc201a24398327f9daad6738b01af1aacc6..fdeb3a982771514003b786b90575c8b3ae70b39d 100644 --- a/theories/bi/derived_connectives.v +++ b/theories/bi/derived_connectives.v @@ -133,3 +133,12 @@ Arguments löb_weak {_ _} _ _. Notation BiLaterContractive PROP := (Contractive (bi_later (PROP:=PROP))) (only parsing). + +(** The class [BiPureForall] states that universal quantification commutes with +the embedding of pure propositions. The reverse direction of the entailment +described by this type class is derivable, so it is not included. + +An instance of [BiPureForall] itself is derivable if we assume excluded middle +in Coq, see the lemma [bi_pure_forall_em] in [derived_laws]. *) +Class BiPureForall (PROP : bi) := + pure_forall_2 : ∀ {A} (φ : A → Prop), (∀ a, ⌜ φ a âŒ) ⊢@{PROP} ⌜ ∀ a, φ a âŒ. diff --git a/theories/bi/derived_laws.v b/theories/bi/derived_laws.v index 57a016d07b2ca80e98939edfe5c5b6b29ba6ab65..e9191e1348cd180d4e228335ccadcbe1b41cd4a8 100644 --- a/theories/bi/derived_laws.v +++ b/theories/bi/derived_laws.v @@ -526,18 +526,20 @@ Proof. - eapply pure_elim=> // -[?|?]; auto using pure_mono. - apply or_elim; eauto using pure_mono. Qed. -Lemma pure_impl φ1 φ2 : ⌜φ1 → φ2⌠⊣⊢ (⌜φ1⌠→ ⌜φ2âŒ). -Proof. - apply (anti_symm _). - - apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver. - - rewrite -pure_forall_2. apply forall_intro=> ?. - by rewrite -(left_id True bi_and (_→_))%I (pure_True φ1) // impl_elim_r. -Qed. -Lemma pure_forall {A} (φ : A → Prop) : ⌜∀ x, φ x⌠⊣⊢ ∀ x, ⌜φ xâŒ. -Proof. - apply (anti_symm _); auto using pure_forall_2. - apply forall_intro=> x. eauto using pure_mono. -Qed. +Lemma pure_impl_1 φ1 φ2 : ⌜φ1 → φ2⌠⊢ (⌜φ1⌠→ ⌜φ2âŒ). +Proof. apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver. Qed. +Lemma pure_impl_2 `{!BiPureForall PROP} φ1 φ2 : (⌜φ1⌠→ ⌜φ2âŒ) ⊢ ⌜φ1 → φ2âŒ. +Proof. + rewrite -pure_forall_2. apply forall_intro=> ?. + by rewrite -(left_id True bi_and (_→_))%I (pure_True φ1) // impl_elim_r. +Qed. +Lemma pure_impl `{!BiPureForall PROP} φ1 φ2 : ⌜φ1 → φ2⌠⊣⊢ (⌜φ1⌠→ ⌜φ2âŒ). +Proof. apply (anti_symm _); auto using pure_impl_1, pure_impl_2. Qed. +Lemma pure_forall_1 {A} (φ : A → Prop) : ⌜∀ x, φ x⌠⊢ ∀ x, ⌜φ xâŒ. +Proof. apply forall_intro=> x. eauto using pure_mono. Qed. +Lemma pure_forall `{!BiPureForall PROP} {A} (φ : A → Prop) : + ⌜∀ x, φ x⌠⊣⊢ ∀ x, ⌜φ xâŒ. +Proof. apply (anti_symm _); auto using pure_forall_1, pure_forall_2. Qed. Lemma pure_exist {A} (φ : A → Prop) : ⌜∃ x, φ x⌠⊣⊢ ∃ x, ⌜φ xâŒ. Proof. apply (anti_symm _). @@ -545,6 +547,13 @@ Proof. - apply exist_elim=> x. eauto using pure_mono. Qed. +Lemma bi_pure_forall_em : (∀ φ : Prop, φ ∨ ¬φ) → BiPureForall PROP. +Proof. + intros Hem A φ. destruct (Hem (∃ a, ¬φ a)) as [[a Hφ]|Hφ]. + { rewrite (forall_elim a). by apply pure_elim'. } + apply pure_intro=> a. destruct (Hem (φ a)); naive_solver. +Qed. + Lemma pure_impl_forall φ P : (⌜φ⌠→ P) ⊣⊢ (∀ _ : φ, P). Proof. apply (anti_symm _). diff --git a/theories/bi/interface.v b/theories/bi/interface.v index b0df9c7573050e5e8485dcbe4f5e9dfd1c4d4170..ba41b1898570fbaa64b031603b60e1da6a7271fb 100644 --- a/theories/bi/interface.v +++ b/theories/bi/interface.v @@ -65,9 +65,6 @@ Section bi_mixin. (** Higher-order logic *) bi_mixin_pure_intro (φ : Prop) P : φ → P ⊢ ⌜ φ âŒ; bi_mixin_pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌠⊢ P; - (* This is actually derivable if we assume excluded middle in Coq, - via [(∀ a, φ a) ∨ (∃ a, ¬φ a)]. *) - bi_mixin_pure_forall_2 {A} (φ : A → Prop) : (∀ a, ⌜ φ a âŒ) ⊢ ⌜ ∀ a, φ a âŒ; bi_mixin_and_elim_l P Q : P ∧ Q ⊢ P; bi_mixin_and_elim_r P Q : P ∧ Q ⊢ Q; @@ -247,6 +244,7 @@ Notation "(∧)" := bi_and (only parsing) : bi_scope. Infix "∨" := bi_or : bi_scope. Notation "(∨)" := bi_or (only parsing) : bi_scope. Infix "→" := bi_impl : bi_scope. +Notation "¬ P" := (P → False)%I : bi_scope. Infix "∗" := bi_sep : bi_scope. Notation "(∗)" := bi_sep (only parsing) : bi_scope. Notation "P -∗ Q" := (bi_wand P Q) : bi_scope. @@ -310,8 +308,6 @@ Lemma pure_intro (φ : Prop) P : φ → P ⊢ ⌜ φ âŒ. Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed. Lemma pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌠⊢ P. Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed. -Lemma pure_forall_2 {A} (φ : A → Prop) : (∀ a, ⌜ φ a âŒ) ⊢@{PROP} ⌜ ∀ a, φ a âŒ. -Proof. eapply bi_mixin_pure_forall_2, bi_bi_mixin. Qed. Lemma and_elim_l P Q : P ∧ Q ⊢ P. Proof. eapply bi_mixin_and_elim_l, bi_bi_mixin. Qed. diff --git a/theories/bi/lib/counterexamples.v b/theories/bi/lib/counterexamples.v index 3297952f2904fecdb955cba33968b988b424d86c..a9eaff530f4ab8081b0f02094ee3cba649c9a1e3 100644 --- a/theories/bi/lib/counterexamples.v +++ b/theories/bi/lib/counterexamples.v @@ -9,7 +9,6 @@ Set Default Proof Using "Type*". name-dependent allocation. *) Module savedprop. Section savedprop. Context `{BiAffine PROP}. - Notation "¬ P" := (â–¡ (P → False))%I : bi_scope. Implicit Types P : PROP. Context (bupd : PROP → PROP). @@ -39,15 +38,15 @@ Module savedprop. Section savedprop. Qed. (** A bad recursive reference: "Assertion with name [i] does not hold" *) - Definition A (i : ident) : PROP := (∃ P, ¬ P ∗ saved i P)%I. + Definition A (i : ident) : PROP := (∃ P, â–¡ ¬ P ∗ saved i P)%I. Lemma A_alloc : ⊢ |==> ∃ i, saved i (A i). Proof. by apply sprop_alloc_dep. Qed. Lemma saved_NA i : saved i (A i) ⊢ ¬ A i. Proof. - iIntros "#Hs !> #HA". iPoseProof "HA" as "HA'". - iDestruct "HA'" as (P) "[#HNP HsP]". iApply "HNP". + iIntros "#Hs #HA". iPoseProof "HA" as "HA'". + iDestruct "HA'" as (P) "[HNP HsP]". iApply "HNP". iDestruct (sprop_agree i P (A i) with "[]") as "#[_ HP]". { eauto. } iApply "HP". done. @@ -55,8 +54,8 @@ Module savedprop. Section savedprop. Lemma saved_A i : saved i (A i) ⊢ A i. Proof. - iIntros "#Hs". iExists (A i). iFrame "#". - by iApply saved_NA. + iIntros "#Hs". iExists (A i). iFrame "Hs". + iIntros "!>". by iApply saved_NA. Qed. Lemma contradiction : False. @@ -188,14 +187,14 @@ Module inv. Section inv. Qed. (** And now we tie a bad knot. *) - Notation "¬ P" := (â–¡ (P -∗ fupd M1 False))%I : bi_scope. - Definition A i : PROP := (∃ P, ¬P ∗ saved i P)%I. + Notation not_fupd P := (â–¡ (P -∗ fupd M1 False))%I. + Definition A i : PROP := (∃ P, not_fupd P ∗ saved i P)%I. Global Instance A_persistent i : Persistent (A i) := _. Lemma A_alloc : ⊢ fupd M1 (∃ i, saved i (A i)). Proof. by apply saved_alloc. Qed. - Lemma saved_NA i : saved i (A i) ⊢ ¬A i. + Lemma saved_NA i : saved i (A i) ⊢ not_fupd (A i). Proof. iIntros "#Hi !> #HA". iPoseProof "HA" as "HA'". iDestruct "HA'" as (P) "#[HNP Hi']". diff --git a/theories/bi/monpred.v b/theories/bi/monpred.v index f5a13ea1733f7d69465865d9be22fa57e5024078..a81009a0d9ea3624793303846878a175cd6b490b 100644 --- a/theories/bi/monpred.v +++ b/theories/bi/monpred.v @@ -259,7 +259,6 @@ Proof. + intros [[] []]. split=>i. by apply bi.equiv_spec. - intros P φ ?. split=> i. by apply bi.pure_intro. - intros φ P HP. split=> i. apply bi.pure_elim'=> ?. by apply HP. - - intros A φ. split=> i. by apply bi.pure_forall_2. - intros P Q. split=> i. by apply bi.and_elim_l. - intros P Q. split=> i. by apply bi.and_elim_r. - intros P Q R [?] [?]. split=> i. by apply bi.and_intro. @@ -402,6 +401,9 @@ Proof. unseal. split. solve_proper. Qed. Global Instance monPred_in_flip_mono : Proper ((⊑) ==> flip (⊢)) (@monPred_in I PROP). Proof. solve_proper. Qed. +Global Instance monPred_pure_forall : BiPureForall PROP → BiPureForall monPredI. +Proof. intros ? A φ. split=> /= i. unseal. by apply pure_forall_2. Qed. + Global Instance monPred_later_contractive : BiLaterContractive PROP → BiLaterContractive monPredI. Proof. unseal=> ? n P Q HPQ. split=> i /=. f_contractive. apply HPQ. Qed. diff --git a/theories/proofmode/class_instances.v b/theories/proofmode/class_instances.v index 2ee7a4d62d986402a54cb9d7f2c4911cfb90ca3b..6f2af1ea3b4b02b6910f4179ae3b7a0ca4592619 100644 --- a/theories/proofmode/class_instances.v +++ b/theories/proofmode/class_instances.v @@ -155,9 +155,9 @@ Proof. rewrite /IntoPure pure_and. by intros -> ->. Qed. Global Instance into_pure_pure_or (φ1 φ2 : Prop) P1 P2 : IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∨ P2) (φ1 ∨ φ2). Proof. rewrite /IntoPure pure_or. by intros -> ->. Qed. -Global Instance into_pure_pure_impl (φ1 φ2 : Prop) P1 P2 : +Global Instance into_pure_pure_impl `{!BiPureForall PROP} (φ1 φ2 : Prop) P1 P2 : FromPure false P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 → P2) (φ1 → φ2). -Proof. rewrite /FromPure /IntoPure pure_impl=> <- -> //. Qed. +Proof. rewrite /FromPure /IntoPure /= => <- ->. apply pure_impl_2. Qed. Global Instance into_pure_exist {A} (Φ : A → PROP) (φ : A → Prop) : (∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∃ x, Φ x) (∃ x, φ x). @@ -165,10 +165,12 @@ Proof. rewrite /IntoPure=>Hx. rewrite pure_exist. by setoid_rewrite Hx. Qed. Global Instance into_pure_texist {TT : tele} (Φ : TT → PROP) (φ : TT → Prop) : (∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∃.. x, Φ x) (∃.. x, φ x). Proof. rewrite /IntoPure texist_exist bi_texist_exist. apply into_pure_exist. Qed. -Global Instance into_pure_forall {A} (Φ : A → PROP) (φ : A → Prop) : +Global Instance into_pure_forall `{!BiPureForall PROP} + {A} (Φ : A → PROP) (φ : A → Prop) : (∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∀ x, Φ x) (∀ x, φ x). Proof. rewrite /IntoPure=>Hx. rewrite -pure_forall_2. by setoid_rewrite Hx. Qed. -Global Instance into_pure_tforall {TT : tele} (Φ : TT → PROP) (φ : TT → Prop) : +Global Instance into_pure_tforall `{!BiPureForall PROP} + {TT : tele} (Φ : TT → PROP) (φ : TT → Prop) : (∀ x, IntoPure (Φ x) (φ x)) → IntoPure (∀.. x, Φ x) (∀.. x, φ x). Proof. rewrite /IntoPure !tforall_forall bi_tforall_forall. apply into_pure_forall. @@ -177,7 +179,7 @@ Qed. Global Instance into_pure_pure_sep (φ1 φ2 : Prop) P1 P2 : IntoPure P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 ∗ P2) (φ1 ∧ φ2). Proof. rewrite /IntoPure=> -> ->. by rewrite sep_and pure_and. Qed. -Global Instance into_pure_pure_wand a (φ1 φ2 : Prop) P1 P2 : +Global Instance into_pure_pure_wand `{!BiPureForall PROP} a (φ1 φ2 : Prop) P1 P2 : FromPure a P1 φ1 → IntoPure P2 φ2 → IntoPure (P1 -∗ P2) (φ1 → φ2). Proof. rewrite /FromPure /IntoPure=> <- -> /=. rewrite pure_impl. @@ -218,7 +220,7 @@ Qed. Global Instance from_pure_pure_impl a (φ1 φ2 : Prop) P1 P2 : IntoPure P1 φ1 → FromPure a P2 φ2 → FromPure a (P1 → P2) (φ1 → φ2). Proof. - rewrite /FromPure /IntoPure pure_impl=> -> <-. destruct a=>//=. + rewrite /FromPure /IntoPure pure_impl_1=> -> <-. destruct a=>//=. apply bi.impl_intro_l. by rewrite affinely_and_r bi.impl_elim_r. Qed. @@ -234,7 +236,7 @@ Proof. rewrite /FromPure texist_exist bi_texist_exist. apply from_pure_exist. Qe Global Instance from_pure_forall {A} a (Φ : A → PROP) (φ : A → Prop) : (∀ x, FromPure a (Φ x) (φ x)) → FromPure a (∀ x, Φ x) (∀ x, φ x). Proof. - rewrite /FromPure=>Hx. rewrite pure_forall. setoid_rewrite <-Hx. + rewrite /FromPure=>Hx. rewrite pure_forall_1. setoid_rewrite <-Hx. destruct a=>//=. apply affinely_forall. Qed. Global Instance from_pure_tforall {TT : tele} a (Φ : TT → PROP) (φ : TT → Prop) : @@ -260,8 +262,8 @@ Proof. destruct a; simpl. - destruct Ha as [Ha|?]; first inversion Ha. rewrite -persistent_and_affinely_sep_r -(affine_affinely P1) HP1. - by rewrite affinely_and_l pure_impl impl_elim_r. - - by rewrite HP1 sep_and pure_impl impl_elim_r. + by rewrite affinely_and_l pure_impl_1 impl_elim_r. + - by rewrite HP1 sep_and pure_impl_1 impl_elim_r. Qed. Global Instance from_pure_persistently P a φ : @@ -880,15 +882,16 @@ Proof. by rewrite /FromForall. Qed. Global Instance from_forall_tforall {TT : tele} (Φ : TT → PROP) name : AsIdentName Φ name → FromForall (bi_tforall Φ) Φ name. Proof. by rewrite /FromForall bi_tforall_forall. Qed. -Global Instance from_forall_pure {A} (φ : A → Prop) name : +Global Instance from_forall_pure `{!BiPureForall PROP} {A} (φ : A → Prop) name : AsIdentName φ name → @FromForall PROP A ⌜∀ a : A, φ a⌠(λ a, ⌜ φ a âŒ)%I name. -Proof. by rewrite /FromForall pure_forall. Qed. -Global Instance from_tforall_pure {TT : tele} (φ : TT → Prop) name : +Proof. by rewrite /FromForall pure_forall_2. Qed. +Global Instance from_tforall_pure `{!BiPureForall PROP} + {TT : tele} (φ : TT → Prop) name : AsIdentName φ name → @FromForall PROP TT ⌜tforall φ⌠(λ x, ⌜ φ x âŒ)%I name. Proof. by rewrite /FromForall tforall_forall pure_forall. Qed. (* [H] is the default name for the [φ] hypothesis, in the following three instances *) -Global Instance from_forall_pure_not (φ : Prop) : +Global Instance from_forall_pure_not `{!BiPureForall PROP} (φ : Prop) : @FromForall PROP φ ⌜¬ φ⌠(λ _ : φ, False)%I (to_ident_name H). Proof. by rewrite /FromForall pure_forall. Qed. Global Instance from_forall_impl_pure P Q φ : diff --git a/theories/si_logic/bi.v b/theories/si_logic/bi.v index d9cc4ae66a4a4c5ef2d824f0d3be2927efbdccf4..baa2514ea02660585ce60420dc38a5fe1e233a63 100644 --- a/theories/si_logic/bi.v +++ b/theories/si_logic/bi.v @@ -37,7 +37,6 @@ Proof. - solve_proper. - exact: pure_intro. - exact: pure_elim'. - - exact: @pure_forall_2. - exact: and_elim_l. - exact: and_elim_r. - exact: and_intro. @@ -116,6 +115,9 @@ Canonical Structure siPropI : bi := {| bi_ofe_mixin := ofe_mixin_of siProp; bi_bi_mixin := siProp_bi_mixin; bi_bi_later_mixin := siProp_bi_later_mixin |}. +Instance siProp_pure_forall : BiPureForall siPropI. +Proof. exact: @pure_forall_2. Qed. + Instance siProp_later_contractive : BiLaterContractive siPropI. Proof. apply later_contractive. Qed.