From 3b36c1fe2e7620a62c1ceed406d92620152af355 Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Tue, 7 Apr 2020 21:40:51 +0200 Subject: [PATCH] rename gc -> inv_heap --- _CoqProject | 2 +- theories/base_logic/lib/gc.v | 277 ------------------------ theories/base_logic/lib/gen_inv_heap.v | 278 +++++++++++++++++++++++++ 3 files changed, 279 insertions(+), 278 deletions(-) delete mode 100644 theories/base_logic/lib/gc.v create mode 100644 theories/base_logic/lib/gen_inv_heap.v diff --git a/_CoqProject b/_CoqProject index cc243d32a..2bb663e11 100644 --- a/_CoqProject +++ b/_CoqProject @@ -82,9 +82,9 @@ theories/base_logic/lib/boxes.v theories/base_logic/lib/na_invariants.v theories/base_logic/lib/cancelable_invariants.v theories/base_logic/lib/gen_heap.v +theories/base_logic/lib/gen_inv_heap.v theories/base_logic/lib/fancy_updates_from_vs.v theories/base_logic/lib/proph_map.v -theories/base_logic/lib/gc.v theories/program_logic/adequacy.v theories/program_logic/lifting.v theories/program_logic/weakestpre.v diff --git a/theories/base_logic/lib/gc.v b/theories/base_logic/lib/gc.v deleted file mode 100644 index 160e90f1d..000000000 --- a/theories/base_logic/lib/gc.v +++ /dev/null @@ -1,277 +0,0 @@ -From iris.algebra Require Import auth excl gmap. -From iris.base_logic.lib Require Import own invariants gen_heap. -From iris.proofmode Require Import tactics. -Set Default Proof Using "Type". - -(** A "GC" location is a location that can never be deallocated explicitly by -the program. It provides a persistent witness that will always allow reading -the location. The location is moreover associated with a (pure, Coq-level) -invariant determining which values are allowed to be stored in that location. -The persistent witness cannot know the exact value that will be read, but it -*can* know that the value satisfies the invariant. - -This is useful for data structures like RDCSS that need to read locations long -after their ownership has been passed back to the client, but do not care *what* -it is that they are reading in that case. - -Note that heap_lang does not actually have explicit dealloaction. However, the -proof rules we provide for heap operations currently are conservative in the -sense that they do not expose this fact. By making "GC" locations a separate -assertion, we can keep all the other proofs that do not need it conservative. -*) - -Definition gcN: namespace := nroot .@ "gc". -Local Notation "l ↦ v" := (mapsto l 1 v) (at level 20) : bi_scope. - -Definition gc_mapUR (L V : Type) `{Countable L} : ucmraT := gmapUR L $ prodR - (optionR $ exclR $ leibnizO V) - (agreeR (V -d> PropO)). - -Definition to_gc_map {L V : Type} `{Countable L} - (gcm: gmap L (V * (V -d> PropO))) : gc_mapUR L V := - prod_map (λ x, Excl' x) to_agree <$> gcm. - -Class gcG (L V : Type) (Σ : gFunctors) `{Countable L} := GcG { - gc_inG :> inG Σ (authR (gc_mapUR L V)); - gc_name : gname -}. -Arguments GcG _ _ {_ _ _ _}. -Arguments gc_name {_ _ _ _ _} _ : assert. - -Class gcPreG (L V : Type) (Σ : gFunctors) `{Countable L} := { - gc_preG_inG :> inG Σ (authR (gc_mapUR L V)) -}. - -Definition gcΣ (L V : Type) `{Countable L} : gFunctors := - #[ GFunctor (authR (gc_mapUR L V)) ]. - -Instance subG_gcPreG (L V : Type) `{Countable L} {Σ} : - subG (gcΣ L V) Σ → gcPreG L V Σ. -Proof. solve_inG. Qed. - -Section defs. - Context {L V : Type} `{Countable L}. - Context `{!invG Σ, !gen_heapG L V Σ, gG: !gcG L V Σ}. - - Definition gc_inv_P : iProp Σ := - (∃ gcm : gmap L (V * (V -d> PropO)), - own (gc_name gG) (â— to_gc_map gcm) ∗ - [∗ map] l ↦ p ∈ gcm, ⌜p.2 p.1⌠∗ l ↦ p.1)%I. - - Definition gc_inv : iProp Σ := inv gcN gc_inv_P. - - Definition gc_mapsto (l : L) (v : V) (I : V → Prop) : iProp Σ := - own (gc_name gG) (â—¯ {[l := (Excl' v, to_agree I) ]}). - - Definition is_gc_loc (l : L) (I : V → Prop) : iProp Σ := - own (gc_name gG) (â—¯ {[l := (None, to_agree I)]}). - -End defs. - -(* [gc_inv] has no parameters to infer the types from, so we need to - make them explicit. *) -Arguments gc_inv _ _ {_ _ _ _ _ _}. - -Instance: Params (@gc_mapsto) 8 := {}. -Instance: Params (@gc_mapsto) 7 := {}. - -Section to_gc_map. - Context {L V : Type} `{Countable L}. - Implicit Types (gcm : gmap L (V * (V -d> PropO))). - - Lemma to_gc_map_valid gcm : ✓ to_gc_map gcm. - Proof. intros l. rewrite lookup_fmap. by case (gcm !! l). Qed. - - Lemma to_gc_map_singleton l v I : - to_gc_map {[l := (v, I)]} =@{gc_mapUR L V} {[l := (Excl' v, to_agree I)]}. - Proof. by rewrite /to_gc_map fmap_insert fmap_empty. Qed. - - Lemma to_gc_map_insert l v I gcm : - to_gc_map (<[l := (v, I)]> gcm) = <[l := (Excl' v, to_agree I)]> (to_gc_map gcm). - Proof. by rewrite /to_gc_map fmap_insert. Qed. - - Lemma lookup_to_gc_map_None gcm l : - gcm !! l = None → to_gc_map gcm !! l = None. - Proof. by rewrite /to_gc_map lookup_fmap=> ->. Qed. - - Lemma lookup_to_gc_map_Some gcm l v I : - gcm !! l = Some (v, I) → to_gc_map gcm !! l = Some (Excl' v, to_agree I). - Proof. by rewrite /to_gc_map lookup_fmap=> ->. Qed. - - Lemma lookup_to_gc_map_Some_2 gcm l v' I' : - to_gc_map gcm !! l ≡ Some (v', I') → - ∃ v I, v' = Excl' v ∧ I' ≡ to_agree I ∧ gcm !! l = Some (v, I). - Proof. - rewrite /to_gc_map /prod_map lookup_fmap. rewrite fmap_Some_equiv. - intros ([] & Hsome & [Heqv HeqI]); simplify_eq/=; eauto. - Qed. -End to_gc_map. - -Lemma gc_init {L V : Type} `{Countable L, !invG Σ, !gen_heapG L V Σ, !gcPreG L V Σ} E: - ⊢ |==> ∃ _ : gcG L V Σ, |={E}=> gc_inv L V. -Proof. - iMod (own_alloc (â— (to_gc_map ∅))) as (γ) "Hâ—". - { rewrite auth_auth_valid. exact: to_gc_map_valid. } - iModIntro. - iExists (GcG L V γ). - iAssert (gc_inv_P (gG := GcG L V γ)) with "[Hâ—]" as "P". - { iExists _. iFrame. done. } - iApply (inv_alloc gcN E gc_inv_P with "P"). -Qed. - -Section gc. - Context {L V : Type} `{Countable L}. - Context `{!invG Σ, !gen_heapG L V Σ, gG: !gcG L V Σ}. - Implicit Types (l : L) (v : V) (I : V → Prop). - Implicit Types (gcm : gmap L (V * (V -d> PropO))). - - (** * Helpers *) - - Lemma is_gc_lookup_Some l gcm I : - is_gc_loc l I -∗ own (gc_name gG) (â— to_gc_map gcm) -∗ - ⌜∃ v I', gcm !! l = Some (v, I') ∧ ∀ w, I w ↔ I' w âŒ. - Proof. - iIntros "Hgc_l Hâ—¯". - iDestruct (own_valid_2 with "Hâ—¯ Hgc_l") as %[Hincl Hvalid]%auth_both_valid. - iPureIntro. - move: Hincl; rewrite singleton_included_l; intros ([v' I'] & Hsome & Hincl). - apply lookup_to_gc_map_Some_2 in Hsome as (v'' & I'' & _ & HI & Hgcm). - move: Hincl; rewrite HI Some_included_total pair_included - to_agree_included; intros [??]; eauto. - Qed. - - Lemma gc_mapsto_lookup_Some l v gcm I : - gc_mapsto l v I -∗ own (gc_name gG) (â— to_gc_map gcm) -∗ - ⌜ ∃ I', gcm !! l = Some (v, I') ∧ ∀ w, I w ↔ I' w âŒ. - Proof. - iIntros "Hgc_l Hâ—". - iDestruct (own_valid_2 with "Hâ— Hgc_l") as %[Hincl Hvalid]%auth_both_valid. - iPureIntro. - move: Hincl; rewrite singleton_included_l; intros ([v' I'] & Hsome & Hincl). - apply lookup_to_gc_map_Some_2 in Hsome as (v'' & I'' & -> & HI & Hgcm). - move: Hincl; rewrite HI Some_included_total pair_included - Excl_included to_agree_included; intros [-> ?]; eauto. - Qed. - - (** * Typeclass instances *) - - (* FIXME(Coq #6294): needs new unification - The uses of [apply:] and [move: ..; rewrite ..] (by lack of [apply: .. in ..]) - in this file are needed because Coq's default unification algorithm fails. *) - Global Instance gc_mapsto_proper l v : - Proper (pointwise_relation _ iff ==> (≡)) (gc_mapsto l v). - Proof. - intros I1 I2 ?. rewrite /gc_mapsto. do 2 f_equiv. - apply: singletonM_proper. f_equiv. by apply: to_agree_proper. - Qed. - Global Instance is_gc_loc_proper l : - Proper (pointwise_relation _ iff ==> (≡)) (is_gc_loc l). - Proof. - intros I1 I2 ?. rewrite /is_gc_loc. do 2 f_equiv. - apply: singletonM_proper. f_equiv. by apply: to_agree_proper. - Qed. - - Global Instance is_gc_loc_persistent l I : Persistent (is_gc_loc l I). - Proof. rewrite /is_gc_loc. apply _. Qed. - - Global Instance is_gc_loc_timeless l I : Timeless (is_gc_loc l I). - Proof. rewrite /is_gc_loc. apply _. Qed. - - Global Instance gc_mapsto_timeless l v I : Timeless (gc_mapsto l v I). - Proof. rewrite /is_gc_loc. apply _. Qed. - - (** * Public lemmas *) - - Lemma make_gc l v I E : - ↑gcN ⊆ E → - I v → - gc_inv L V -∗ l ↦ v ={E}=∗ gc_mapsto l v I. - Proof. - iIntros (HN HI) "#Hinv Hl". - iMod (inv_acc_timeless _ gcN with "Hinv") as "[HP Hclose]"; first done. - iDestruct "HP" as (gcm) "[Hâ— HsepM]". - destruct (gcm !! l) as [v'| ] eqn: Hlookup. - - (* auth map contains l --> contradiction *) - iDestruct (big_sepM_lookup with "HsepM") as "[_ Hl']"; first done. - by iDestruct (mapsto_valid_2 with "Hl Hl'") as %?. - - iMod (own_update with "Hâ—") as "[Hâ— Hâ—¯]". - { apply lookup_to_gc_map_None in Hlookup. - apply (auth_update_alloc _ - (to_gc_map (<[l:=(v,I)]> gcm)) (to_gc_map ({[l:=(v,I)]}))). - rewrite to_gc_map_insert to_gc_map_singleton. - by apply: alloc_singleton_local_update. } - iMod ("Hclose" with "[Hâ— HsepM Hl]"). - + iExists _. - iDestruct (big_sepM_insert _ _ _ (_,_) with "[$HsepM $Hl]") - as "HsepM"; auto with iFrame. - + iModIntro. by rewrite /gc_mapsto to_gc_map_singleton. - Qed. - - Lemma gc_is_gc l v I : gc_mapsto l v I -∗ is_gc_loc l I. - Proof. - apply own_mono, auth_frag_mono. rewrite singleton_included pair_included. - right. split; [apply: ucmra_unit_least|done]. - Qed. - - (** An accessor to make use of [gc_mapsto]. - This opens the invariant *before* consuming [gc_mapsto] so that you can use - this before opening an atomic update that provides [gc_mapsto]!. *) - Lemma gc_acc_strong E : - ↑gcN ⊆ E → - gc_inv L V ={E, E ∖ ↑gcN}=∗ ∀ l v I, gc_mapsto l v I -∗ - (⌜I v⌠∗ l ↦ v ∗ (∀ w, ⌜I w ⌠-∗ l ↦ w ==∗ gc_mapsto l w I ∗ |={E ∖ ↑gcN, E}=> True)). - Proof. - iIntros (HN) "#Hinv". - iMod (inv_acc_timeless _ gcN _ with "Hinv") as "[HP Hclose]"=>//. - iIntros "!>" (l v I) "Hgc_l". - iDestruct "HP" as (gcm) "[Hâ— HsepM]". - iDestruct (gc_mapsto_lookup_Some with "Hgc_l Hâ—") as %(I'&?&HI'). - setoid_rewrite HI'. - iDestruct (big_sepM_delete with "HsepM") as "[[HI Hl] HsepM]"; first done. - iIntros "{$HI $Hl}" (w ?) "Hl". - iMod (own_update_2 with "Hâ— Hgc_l") as "[Hâ— Hâ—¯]". - { apply (auth_update _ _ (<[l := (Excl' w, to_agree I')]> (to_gc_map gcm)) - {[l := (Excl' w, to_agree I)]}). - apply: singleton_local_update. - { by apply lookup_to_gc_map_Some. } - apply: prod_local_update_1. apply: option_local_update. - apply: exclusive_local_update. done. } - iDestruct (big_sepM_insert _ _ _ (w, I') with "[$HsepM $Hl //]") as "HsepM". - { apply lookup_delete. } - rewrite insert_delete -to_gc_map_insert. iIntros "!> {$Hâ—¯}". - iApply ("Hclose" with "[Hâ— HsepM]"). iExists _; by iFrame. - Qed. - - (** Derive a more standard accessor. *) - Lemma gc_acc E l v I: - ↑gcN ⊆ E → - gc_inv L V -∗ gc_mapsto l v I ={E, E ∖ ↑gcN}=∗ - (⌜I v⌠∗ l ↦ v ∗ (∀ w, ⌜I w ⌠-∗ l ↦ w ={E ∖ ↑gcN, E}=∗ gc_mapsto l w I)). - Proof. - iIntros (?) "#Hinv Hl". - iMod (gc_acc_strong with "Hinv") as "Hacc"; first done. - iDestruct ("Hacc" with "Hl") as "(HI & Hl & Hclose)". - iIntros "!> {$HI $Hl}" (w) "HI Hl". - iMod ("Hclose" with "HI Hl") as "[$ $]". - Qed. - - Lemma is_gc_acc l I E : - ↑gcN ⊆ E → - gc_inv L V -∗ is_gc_loc l I ={E, E ∖ ↑gcN}=∗ - ∃ v, ⌜I v⌠∗ l ↦ v ∗ (l ↦ v ={E ∖ ↑gcN, E}=∗ ⌜TrueâŒ). - Proof. - iIntros (HN) "#Hinv Hgc_l". - iMod (inv_acc_timeless _ gcN _ with "Hinv") as "[HP Hclose]"=>//. - iModIntro. - iDestruct "HP" as (gcm) "[Hâ— HsepM]". - iDestruct (is_gc_lookup_Some with "Hgc_l Hâ—") as %(v&I'&?&HI'). - iDestruct (big_sepM_lookup_acc with "HsepM") as "[[#HI Hl] HsepM]"=>//. - setoid_rewrite HI'. - iExists _. iIntros "{$HI $Hl} Hl". - iMod ("Hclose" with "[Hâ— HsepM Hl]"); last done. - iExists _. iFrame "Hâ—". iApply ("HsepM" with "[$Hl //]"). - Qed. - -End gc. - -Typeclasses Opaque is_gc_loc gc_mapsto. diff --git a/theories/base_logic/lib/gen_inv_heap.v b/theories/base_logic/lib/gen_inv_heap.v new file mode 100644 index 000000000..e022e2d77 --- /dev/null +++ b/theories/base_logic/lib/gen_inv_heap.v @@ -0,0 +1,278 @@ +From iris.algebra Require Import auth excl gmap. +From iris.base_logic.lib Require Import own invariants gen_heap. +From iris.proofmode Require Import tactics. +Set Default Proof Using "Type". + +(** An "invariant" location is a location that has some invariant about its +value attached to it, and that can never be deallocated explicitly by the +program. It provides a persistent witness that will always allow reading the +location, guaranteeing that the value read will satisfy the invariant. + +This is useful for data structures like RDCSS that need to read locations long +after their ownership has been passed back to the client, but do not care *what* +it is that they are reading in that case. In that extreme case, the invariant +may just be [True]. + +Since invariant locations cannot be deallocated, they only make sense when +modelling languages with garbage collection. Note that heap_lang does not +actually have explicit dealloaction. However, the proof rules we provide for +heap operations currently are conservative in the sense that they do not expose +this fact. By making "invariant" locations a separate assertion, we can keep +all the other proofs that do not need it conservative. *) + +Definition inv_heapN: namespace := nroot .@ "inv_heap". +Local Notation "l ↦ v" := (mapsto l 1 v) (at level 20) : bi_scope. + +Definition inv_heap_mapUR (L V : Type) `{Countable L} : ucmraT := gmapUR L $ prodR + (optionR $ exclR $ leibnizO V) + (agreeR (V -d> PropO)). + +Definition to_inv_heap {L V : Type} `{Countable L} + (h: gmap L (V * (V -d> PropO))) : inv_heap_mapUR L V := + prod_map (λ x, Excl' x) to_agree <$> h. + +Class inv_heapG (L V : Type) (Σ : gFunctors) `{Countable L} := Inv_HeapG { + inv_heap_inG :> inG Σ (authR (inv_heap_mapUR L V)); + inv_heap_name : gname +}. +Arguments Inv_HeapG _ _ {_ _ _ _}. +Arguments inv_heap_name {_ _ _ _ _} _ : assert. + +Class inv_heapPreG (L V : Type) (Σ : gFunctors) `{Countable L} := { + inv_heap_preG_inG :> inG Σ (authR (inv_heap_mapUR L V)) +}. + +Definition inv_heapΣ (L V : Type) `{Countable L} : gFunctors := + #[ GFunctor (authR (inv_heap_mapUR L V)) ]. + +Instance subG_inv_heapPreG (L V : Type) `{Countable L} {Σ} : + subG (inv_heapΣ L V) Σ → inv_heapPreG L V Σ. +Proof. solve_inG. Qed. + +Section defs. + Context {L V : Type} `{Countable L}. + Context `{!invG Σ, !gen_heapG L V Σ, gG: !inv_heapG L V Σ}. + + Definition inv_heap_inv_P : iProp Σ := + (∃ h : gmap L (V * (V -d> PropO)), + own (inv_heap_name gG) (â— to_inv_heap h) ∗ + [∗ map] l ↦ p ∈ h, ⌜p.2 p.1⌠∗ l ↦ p.1)%I. + + Definition inv_heap_inv : iProp Σ := inv inv_heapN inv_heap_inv_P. + + Definition inv_mapsto_own (l : L) (v : V) (I : V → Prop) : iProp Σ := + own (inv_heap_name gG) (â—¯ {[l := (Excl' v, to_agree I) ]}). + + Definition inv_mapsto (l : L) (I : V → Prop) : iProp Σ := + own (inv_heap_name gG) (â—¯ {[l := (None, to_agree I)]}). + +End defs. + +(* [inv_heap_inv] has no parameters to infer the types from, so we need to + make them explicit. *) +Arguments inv_heap_inv _ _ {_ _ _ _ _ _}. + +Instance: Params (@inv_mapsto_own) 8 := {}. +Instance: Params (@inv_mapsto) 7 := {}. + +Section to_inv_heap. + Context {L V : Type} `{Countable L}. + Implicit Types (h : gmap L (V * (V -d> PropO))). + + Lemma to_inv_heap_valid h : ✓ to_inv_heap h. + Proof. intros l. rewrite lookup_fmap. by case (h !! l). Qed. + + Lemma to_inv_heap_singleton l v I : + to_inv_heap {[l := (v, I)]} =@{inv_heap_mapUR L V} {[l := (Excl' v, to_agree I)]}. + Proof. by rewrite /to_inv_heap fmap_insert fmap_empty. Qed. + + Lemma to_inv_heap_insert l v I h : + to_inv_heap (<[l := (v, I)]> h) = <[l := (Excl' v, to_agree I)]> (to_inv_heap h). + Proof. by rewrite /to_inv_heap fmap_insert. Qed. + + Lemma lookup_to_inv_heap_None h l : + h !! l = None → to_inv_heap h !! l = None. + Proof. by rewrite /to_inv_heap lookup_fmap=> ->. Qed. + + Lemma lookup_to_inv_heap_Some h l v I : + h !! l = Some (v, I) → to_inv_heap h !! l = Some (Excl' v, to_agree I). + Proof. by rewrite /to_inv_heap lookup_fmap=> ->. Qed. + + Lemma lookup_to_inv_heap_Some_2 h l v' I' : + to_inv_heap h !! l ≡ Some (v', I') → + ∃ v I, v' = Excl' v ∧ I' ≡ to_agree I ∧ h !! l = Some (v, I). + Proof. + rewrite /to_inv_heap /prod_map lookup_fmap. rewrite fmap_Some_equiv. + intros ([] & Hsome & [Heqv HeqI]); simplify_eq/=; eauto. + Qed. +End to_inv_heap. + +Lemma inv_heap_init {L V : Type} `{Countable L, !invG Σ, !gen_heapG L V Σ, !inv_heapPreG L V Σ} E: + ⊢ |==> ∃ _ : inv_heapG L V Σ, |={E}=> inv_heap_inv L V. +Proof. + iMod (own_alloc (â— (to_inv_heap ∅))) as (γ) "Hâ—". + { rewrite auth_auth_valid. exact: to_inv_heap_valid. } + iModIntro. + iExists (Inv_HeapG L V γ). + iAssert (inv_heap_inv_P (gG := Inv_HeapG L V γ)) with "[Hâ—]" as "P". + { iExists _. iFrame. done. } + iApply (inv_alloc inv_heapN E inv_heap_inv_P with "P"). +Qed. + +Section inv_heap. + Context {L V : Type} `{Countable L}. + Context `{!invG Σ, !gen_heapG L V Σ, gG: !inv_heapG L V Σ}. + Implicit Types (l : L) (v : V) (I : V → Prop). + Implicit Types (h : gmap L (V * (V -d> PropO))). + + (** * Helpers *) + + Lemma inv_mapsto_lookup_Some l h I : + inv_mapsto l I -∗ own (inv_heap_name gG) (â— to_inv_heap h) -∗ + ⌜∃ v I', h !! l = Some (v, I') ∧ ∀ w, I w ↔ I' w âŒ. + Proof. + iIntros "Hl_inv Hâ—¯". + iDestruct (own_valid_2 with "Hâ—¯ Hl_inv") as %[Hincl Hvalid]%auth_both_valid. + iPureIntro. + move: Hincl; rewrite singleton_included_l; intros ([v' I'] & Hsome & Hincl). + apply lookup_to_inv_heap_Some_2 in Hsome as (v'' & I'' & _ & HI & Hh). + move: Hincl; rewrite HI Some_included_total pair_included + to_agree_included; intros [??]; eauto. + Qed. + + Lemma inv_mapsto_own_lookup_Some l v h I : + inv_mapsto_own l v I -∗ own (inv_heap_name gG) (â— to_inv_heap h) -∗ + ⌜ ∃ I', h !! l = Some (v, I') ∧ ∀ w, I w ↔ I' w âŒ. + Proof. + iIntros "Hl_inv Hâ—". + iDestruct (own_valid_2 with "Hâ— Hl_inv") as %[Hincl Hvalid]%auth_both_valid. + iPureIntro. + move: Hincl; rewrite singleton_included_l; intros ([v' I'] & Hsome & Hincl). + apply lookup_to_inv_heap_Some_2 in Hsome as (v'' & I'' & -> & HI & Hh). + move: Hincl; rewrite HI Some_included_total pair_included + Excl_included to_agree_included; intros [-> ?]; eauto. + Qed. + + (** * Typeclass instances *) + + (* FIXME(Coq #6294): needs new unification + The uses of [apply:] and [move: ..; rewrite ..] (by lack of [apply: .. in ..]) + in this file are needed because Coq's default unification algorithm fails. *) + Global Instance inv_mapsto_own_proper l v : + Proper (pointwise_relation _ iff ==> (≡)) (inv_mapsto_own l v). + Proof. + intros I1 I2 ?. rewrite /inv_mapsto_own. do 2 f_equiv. + apply: singletonM_proper. f_equiv. by apply: to_agree_proper. + Qed. + Global Instance inv_mapsto_proper l : + Proper (pointwise_relation _ iff ==> (≡)) (inv_mapsto l). + Proof. + intros I1 I2 ?. rewrite /inv_mapsto. do 2 f_equiv. + apply: singletonM_proper. f_equiv. by apply: to_agree_proper. + Qed. + + Global Instance inv_mapsto_persistent l I : Persistent (inv_mapsto l I). + Proof. rewrite /inv_mapsto. apply _. Qed. + + Global Instance inv_mapsto_timeless l I : Timeless (inv_mapsto l I). + Proof. rewrite /inv_mapsto. apply _. Qed. + + Global Instance inv_mapsto_own_timeless l v I : Timeless (inv_mapsto_own l v I). + Proof. rewrite /inv_mapsto. apply _. Qed. + + (** * Public lemmas *) + + Lemma make_inv_mapsto l v I E : + ↑inv_heapN ⊆ E → + I v → + inv_heap_inv L V -∗ l ↦ v ={E}=∗ inv_mapsto_own l v I. + Proof. + iIntros (HN HI) "#Hinv Hl". + iMod (inv_acc_timeless _ inv_heapN with "Hinv") as "[HP Hclose]"; first done. + iDestruct "HP" as (h) "[Hâ— HsepM]". + destruct (h !! l) as [v'| ] eqn: Hlookup. + - (* auth map contains l --> contradiction *) + iDestruct (big_sepM_lookup with "HsepM") as "[_ Hl']"; first done. + by iDestruct (mapsto_valid_2 with "Hl Hl'") as %?. + - iMod (own_update with "Hâ—") as "[Hâ— Hâ—¯]". + { apply lookup_to_inv_heap_None in Hlookup. + apply (auth_update_alloc _ + (to_inv_heap (<[l:=(v,I)]> h)) (to_inv_heap ({[l:=(v,I)]}))). + rewrite to_inv_heap_insert to_inv_heap_singleton. + by apply: alloc_singleton_local_update. } + iMod ("Hclose" with "[Hâ— HsepM Hl]"). + + iExists _. + iDestruct (big_sepM_insert _ _ _ (_,_) with "[$HsepM $Hl]") + as "HsepM"; auto with iFrame. + + iModIntro. by rewrite /inv_mapsto_own to_inv_heap_singleton. + Qed. + + Lemma inv_mapsto_own_inv l v I : inv_mapsto_own l v I -∗ inv_mapsto l I. + Proof. + apply own_mono, auth_frag_mono. rewrite singleton_included pair_included. + right. split; [apply: ucmra_unit_least|done]. + Qed. + + (** An accessor to make use of [inv_mapsto_own]. + This opens the invariant *before* consuming [inv_mapsto_own] so that you can use + this before opening an atomic update that provides [inv_mapsto_own]!. *) + Lemma inv_mapsto_own_acc_strong E : + ↑inv_heapN ⊆ E → + inv_heap_inv L V ={E, E ∖ ↑inv_heapN}=∗ ∀ l v I, inv_mapsto_own l v I -∗ + (⌜I v⌠∗ l ↦ v ∗ (∀ w, ⌜I w ⌠-∗ l ↦ w ==∗ + inv_mapsto_own l w I ∗ |={E ∖ ↑inv_heapN, E}=> True)). + Proof. + iIntros (HN) "#Hinv". + iMod (inv_acc_timeless _ inv_heapN _ with "Hinv") as "[HP Hclose]"=>//. + iIntros "!>" (l v I) "Hl_inv". + iDestruct "HP" as (h) "[Hâ— HsepM]". + iDestruct (inv_mapsto_own_lookup_Some with "Hl_inv Hâ—") as %(I'&?&HI'). + setoid_rewrite HI'. + iDestruct (big_sepM_delete with "HsepM") as "[[HI Hl] HsepM]"; first done. + iIntros "{$HI $Hl}" (w ?) "Hl". + iMod (own_update_2 with "Hâ— Hl_inv") as "[Hâ— Hâ—¯]". + { apply (auth_update _ _ (<[l := (Excl' w, to_agree I')]> (to_inv_heap h)) + {[l := (Excl' w, to_agree I)]}). + apply: singleton_local_update. + { by apply lookup_to_inv_heap_Some. } + apply: prod_local_update_1. apply: option_local_update. + apply: exclusive_local_update. done. } + iDestruct (big_sepM_insert _ _ _ (w, I') with "[$HsepM $Hl //]") as "HsepM". + { apply lookup_delete. } + rewrite insert_delete -to_inv_heap_insert. iIntros "!> {$Hâ—¯}". + iApply ("Hclose" with "[Hâ— HsepM]"). iExists _; by iFrame. + Qed. + + (** Derive a more standard accessor. *) + Lemma inv_mapsto_own_acc E l v I: + ↑inv_heapN ⊆ E → + inv_heap_inv L V -∗ inv_mapsto_own l v I ={E, E ∖ ↑inv_heapN}=∗ + (⌜I v⌠∗ l ↦ v ∗ (∀ w, ⌜I w ⌠-∗ l ↦ w ={E ∖ ↑inv_heapN, E}=∗ inv_mapsto_own l w I)). + Proof. + iIntros (?) "#Hinv Hl". + iMod (inv_mapsto_own_acc_strong with "Hinv") as "Hacc"; first done. + iDestruct ("Hacc" with "Hl") as "(HI & Hl & Hclose)". + iIntros "!> {$HI $Hl}" (w) "HI Hl". + iMod ("Hclose" with "HI Hl") as "[$ $]". + Qed. + + Lemma inv_mapsto_acc l I E : + ↑inv_heapN ⊆ E → + inv_heap_inv L V -∗ inv_mapsto l I ={E, E ∖ ↑inv_heapN}=∗ + ∃ v, ⌜I v⌠∗ l ↦ v ∗ (l ↦ v ={E ∖ ↑inv_heapN, E}=∗ ⌜TrueâŒ). + Proof. + iIntros (HN) "#Hinv Hl_inv". + iMod (inv_acc_timeless _ inv_heapN _ with "Hinv") as "[HP Hclose]"=>//. + iModIntro. + iDestruct "HP" as (h) "[Hâ— HsepM]". + iDestruct (inv_mapsto_lookup_Some with "Hl_inv Hâ—") as %(v&I'&?&HI'). + iDestruct (big_sepM_lookup_acc with "HsepM") as "[[#HI Hl] HsepM]"=>//. + setoid_rewrite HI'. + iExists _. iIntros "{$HI $Hl} Hl". + iMod ("Hclose" with "[Hâ— HsepM Hl]"); last done. + iExists _. iFrame "Hâ—". iApply ("HsepM" with "[$Hl //]"). + Qed. + +End inv_heap. + +Typeclasses Opaque inv_mapsto inv_mapsto_own. -- GitLab