diff --git a/iris/algebra/big_op.v b/iris/algebra/big_op.v index 91571f38b9e447f2ba5eb34a950770da16be4a43..1893566c2b1df3695e3c1ba23f76886f96287194 100644 --- a/iris/algebra/big_op.v +++ b/iris/algebra/big_op.v @@ -482,7 +482,7 @@ Section gset. Lemma big_opS_list_to_set f (l : list A) : NoDup l → - ([^o set] x ∈ list_to_set l, f x) ≡ [^o list] _ ↦ x ∈ l, f x. + ([^o set] x ∈ list_to_set l, f x) ≡ [^o list] x ∈ l, f x. Proof. induction l as [|x l]; intros Hnodup. - rewrite big_opS_empty //. diff --git a/iris/bi/big_op.v b/iris/bi/big_op.v index 9d8d7519815f0d91d301cfaab81002337979a414..7663101f0f4ca822f26cda918a13bafccd3a5da3 100644 --- a/iris/bi/big_op.v +++ b/iris/bi/big_op.v @@ -1633,7 +1633,7 @@ Section gset. Lemma big_sepS_list_to_set Φ (l : list A) : NoDup l → - ([∗ set] x ∈ list_to_set l, Φ x) ⊣⊢ [∗ list] _ ↦ x ∈ l, Φ x. + ([∗ set] x ∈ list_to_set l, Φ x) ⊣⊢ [∗ list] x ∈ l, Φ x. Proof. apply big_opS_list_to_set. Qed. Lemma big_sepS_sep Φ Ψ X :