diff --git a/iris/algebra/big_op.v b/iris/algebra/big_op.v
index 91571f38b9e447f2ba5eb34a950770da16be4a43..1893566c2b1df3695e3c1ba23f76886f96287194 100644
--- a/iris/algebra/big_op.v
+++ b/iris/algebra/big_op.v
@@ -482,7 +482,7 @@ Section gset.
 
   Lemma big_opS_list_to_set f (l : list A) :
     NoDup l →
-    ([^o set] x ∈ list_to_set l, f x) ≡ [^o list] _ ↦ x ∈ l, f x.
+    ([^o set] x ∈ list_to_set l, f x) ≡ [^o list] x ∈ l, f x.
   Proof.
     induction l as [|x l]; intros Hnodup.
     - rewrite big_opS_empty //.
diff --git a/iris/bi/big_op.v b/iris/bi/big_op.v
index 9d8d7519815f0d91d301cfaab81002337979a414..7663101f0f4ca822f26cda918a13bafccd3a5da3 100644
--- a/iris/bi/big_op.v
+++ b/iris/bi/big_op.v
@@ -1633,7 +1633,7 @@ Section gset.
 
   Lemma big_sepS_list_to_set Φ (l : list A) :
     NoDup l →
-    ([∗ set] x ∈ list_to_set l, Φ x) ⊣⊢ [∗ list] _ ↦ x ∈ l, Φ x.
+    ([∗ set] x ∈ list_to_set l, Φ x) ⊣⊢ [∗ list] x ∈ l, Φ x.
   Proof. apply big_opS_list_to_set. Qed.
 
   Lemma big_sepS_sep Φ Ψ X :