diff --git a/iris/algebra/auth.v b/iris/algebra/auth.v index 702b0b33b30d241ec3f668aafdbcae3e20bd03b4..fe102666fd297fcc1a29bc4d7dbb7fb485f25cb0 100644 --- a/iris/algebra/auth.v +++ b/iris/algebra/auth.v @@ -3,12 +3,13 @@ From iris.algebra Require Import proofmode_classes big_op. From iris.prelude Require Import options. (** The authoritative camera with fractional authoritative elements *) -(** The authoritative camera has 2 types of elements: the authoritative -element [â—{q} a] and the fragment [â—¯ b] (of which there can be several). To -enable sharing of the authoritative element [â—{q} a], it is equiped with a -fraction [q]. Updates are only possible with the full authoritative element -[â— a] (syntax for [â—{1} a]]), while fractional authoritative elements have -agreement, i.e., [✓ (â—{p1} a1 â‹… â—{p2} a2) → a1 ≡ a2]. *) +(** The authoritative camera has 2 types of elements: the authoritative element +[â—{dq} a] and the fragment [â—¯ b] (of which there can be several). To enable +sharing of the authoritative element [â—{dq} a], it is equiped with a +discardable fraction [dq]. Updates are only possible with the full +authoritative element [â— a] (syntax for [â—{#1} a]]), while fractional +authoritative elements have agreement, i.e., [✓ (â—{dq1} a1 â‹… â—{dq2} a2) → a1 ≡ +a2]. *) (** * Definition of the view relation *) (** The authoritative camera is obtained by instantiating the view camera. *) @@ -61,7 +62,7 @@ Definition authO (A : ucmra) : ofe := viewO (A:=A) (B:=A) auth_view_rel. Definition authR (A : ucmra) : cmra := viewR (A:=A) (B:=A) auth_view_rel. Definition authUR (A : ucmra) : ucmra := viewUR (A:=A) (B:=A) auth_view_rel. -Definition auth_auth {A: ucmra} : Qp → A → auth A := view_auth. +Definition auth_auth {A: ucmra} : dfrac → A → auth A := view_auth. Definition auth_frag {A: ucmra} : A → auth A := view_frag. Typeclasses Opaque auth_auth auth_frag. @@ -69,9 +70,13 @@ Typeclasses Opaque auth_auth auth_frag. Global Instance: Params (@auth_auth) 2 := {}. Global Instance: Params (@auth_frag) 1 := {}. +(** FIXME: Refactor these notations using custom entries once Coq bug #13654 +has been fixed. *) +Notation "â—{ dq } a" := (auth_auth dq a) (at level 20, format "â—{ dq } a"). +Notation "â—{# q } a" := (auth_auth (DfracOwn q) a) (at level 20, format "â—{# q } a"). +Notation "â—â–¡ a" := (auth_auth (DfracDiscarded) a) (at level 20). +Notation "â— a" := (auth_auth (DfracOwn 1) a) (at level 20). Notation "â—¯ a" := (auth_frag a) (at level 20). -Notation "â—{ q } a" := (auth_auth q a) (at level 20, format "â—{ q } a"). -Notation "â— a" := (auth_auth 1 a) (at level 20). (** * Laws of the authoritative camera *) (** We omit the usual [equivI] lemma because it is hard to state a suitably @@ -82,9 +87,9 @@ Section auth. Implicit Types a b : A. Implicit Types x y : auth A. - Global Instance auth_auth_ne q : NonExpansive (@auth_auth A q). + Global Instance auth_auth_ne dq : NonExpansive (@auth_auth A dq). Proof. rewrite /auth_auth. apply _. Qed. - Global Instance auth_auth_proper q : Proper ((≡) ==> (≡)) (@auth_auth A q). + Global Instance auth_auth_proper dq : Proper ((≡) ==> (≡)) (@auth_auth A dq). Proof. rewrite /auth_auth. apply _. Qed. Global Instance auth_frag_ne : NonExpansive (@auth_frag A). Proof. rewrite /auth_frag. apply _. Qed. @@ -102,8 +107,8 @@ Section auth. Global Instance auth_ofe_discrete : OfeDiscrete A → OfeDiscrete (authO A). Proof. apply _. Qed. - Global Instance auth_auth_discrete q a : - Discrete a → Discrete (ε : A) → Discrete (â—{q} a). + Global Instance auth_auth_discrete dq a : + Discrete a → Discrete (ε : A) → Discrete (â—{dq} a). Proof. rewrite /auth_auth. apply _. Qed. Global Instance auth_frag_discrete a : Discrete a → Discrete (â—¯ a). Proof. rewrite /auth_frag. apply _. Qed. @@ -111,10 +116,10 @@ Section auth. Proof. apply _. Qed. (** Operation *) - Lemma auth_auth_frac_op p q a : â—{p + q} a ≡ â—{p} a â‹… â—{q} a. + Lemma auth_auth_frac_op dq1 dq2 a : â—{dq1 â‹… dq2} a ≡ â—{dq1} a â‹… â—{dq2} a. Proof. apply view_auth_frac_op. Qed. - Global Instance auth_auth_frac_is_op q q1 q2 a : - IsOp q q1 q2 → IsOp' (â—{q} a) (â—{q1} a) (â—{q2} a). + Global Instance auth_auth_frac_is_op dq dq1 dq2 a : + IsOp dq dq1 dq2 → IsOp' (â—{dq} a) (â—{dq1} a) (â—{dq2} a). Proof. rewrite /auth_auth. apply _. Qed. Lemma auth_frag_op a b : â—¯ (a â‹… b) = â—¯ a â‹… â—¯ b. @@ -146,21 +151,21 @@ Section auth. Proof. apply (big_opMS_commute _). Qed. (** Validity *) - Lemma auth_auth_frac_op_invN n p a q b : ✓{n} (â—{p} a â‹… â—{q} b) → a ≡{n}≡ b. + Lemma auth_auth_frac_op_invN n dq1 a dq2 b : ✓{n} (â—{dq1} a â‹… â—{dq2} b) → a ≡{n}≡ b. Proof. apply view_auth_frac_op_invN. Qed. - Lemma auth_auth_frac_op_inv p a q b : ✓ (â—{p} a â‹… â—{q} b) → a ≡ b. + Lemma auth_auth_frac_op_inv dq1 a dq2 b : ✓ (â—{dq1} a â‹… â—{dq2} b) → a ≡ b. Proof. apply view_auth_frac_op_inv. Qed. - Lemma auth_auth_frac_op_inv_L `{!LeibnizEquiv A} q a p b : - ✓ (â—{p} a â‹… â—{q} b) → a = b. + Lemma auth_auth_frac_op_inv_L `{!LeibnizEquiv A} dq1 a dq2 b : + ✓ (â—{dq1} a â‹… â—{dq2} b) → a = b. Proof. by apply view_auth_frac_op_inv_L. Qed. - Lemma auth_auth_frac_validN n q a : ✓{n} (â—{q} a) ↔ (q ≤ 1)%Qp ∧ ✓{n} a. + Lemma auth_auth_frac_validN n dq a : ✓{n} (â—{dq} a) ↔ ✓dq ∧ ✓{n} a. Proof. by rewrite view_auth_frac_validN auth_view_rel_unit. Qed. Lemma auth_auth_validN n a : ✓{n} (â— a) ↔ ✓{n} a. Proof. by rewrite view_auth_validN auth_view_rel_unit. Qed. Lemma auth_auth_frac_op_validN n q1 q2 a1 a2 : - ✓{n} (â—{q1} a1 â‹… â—{q2} a2) ↔ (q1 + q2 ≤ 1)%Qp ∧ a1 ≡{n}≡ a2 ∧ ✓{n} a1. + ✓{n} (â—{q1} a1 â‹… â—{q2} a2) ↔ ✓(q1 â‹… q2) ∧ a1 ≡{n}≡ a2 ∧ ✓{n} a1. Proof. by rewrite view_auth_frac_op_validN auth_view_rel_unit. Qed. Lemma auth_auth_op_validN n a1 a2 : ✓{n} (â— a1 â‹… â— a2) ↔ False. Proof. apply view_auth_op_validN. Qed. @@ -180,13 +185,13 @@ Section auth. Lemma auth_frag_op_validN_2 n b1 b2 : ✓{n} (b1 â‹… b2) → ✓{n} (â—¯ b1 â‹… â—¯ b2). Proof. apply auth_frag_op_validN. Qed. - Lemma auth_both_frac_validN n q a b : - ✓{n} (â—{q} a â‹… â—¯ b) ↔ (q ≤ 1)%Qp ∧ b ≼{n} a ∧ ✓{n} a. + Lemma auth_both_frac_validN n dq a b : + ✓{n} (â—{dq} a â‹… â—¯ b) ↔ ✓dq ∧ b ≼{n} a ∧ ✓{n} a. Proof. apply view_both_frac_validN. Qed. Lemma auth_both_validN n a b : ✓{n} (â— a â‹… â—¯ b) ↔ b ≼{n} a ∧ ✓{n} a. Proof. apply view_both_validN. Qed. - Lemma auth_auth_frac_valid q a : ✓ (â—{q} a) ↔ (q ≤ 1)%Qp ∧ ✓ a. + Lemma auth_auth_frac_valid dq a : ✓ (â—{dq} a) ↔ ✓dq ∧ ✓ a. Proof. rewrite view_auth_frac_valid !cmra_valid_validN. by setoid_rewrite auth_view_rel_unit. @@ -198,7 +203,7 @@ Section auth. Qed. Lemma auth_auth_frac_op_valid q1 q2 a1 a2 : - ✓ (â—{q1} a1 â‹… â—{q2} a2) ↔ (q1 + q2 ≤ 1)%Qp ∧ a1 ≡ a2 ∧ ✓ a1. + ✓ (â—{q1} a1 â‹… â—{q2} a2) ↔ ✓(q1 â‹… q2) ∧ a1 ≡ a2 ∧ ✓ a1. Proof. rewrite view_auth_frac_op_valid !cmra_valid_validN. setoid_rewrite auth_view_rel_unit. done. @@ -227,8 +232,8 @@ Section auth. (** These lemma statements are a bit awkward as we cannot possibly extract a single witness for [b ≼ a] from validity, we have to make do with one witness per step-index, i.e., [∀ n, b ≼{n} a]. *) - Lemma auth_both_frac_valid q a b : - ✓ (â—{q} a â‹… â—¯ b) ↔ (q ≤ 1)%Qp ∧ (∀ n, b ≼{n} a) ∧ ✓ a. + Lemma auth_both_frac_valid dq a b : + ✓ (â—{dq} a â‹… â—¯ b) ↔ ✓dq ∧ (∀ n, b ≼{n} a) ∧ ✓ a. Proof. rewrite view_both_frac_valid. apply and_iff_compat_l. split. - intros Hrel. split. @@ -238,11 +243,11 @@ Section auth. Qed. Lemma auth_both_valid a b : ✓ (â— a â‹… â—¯ b) ↔ (∀ n, b ≼{n} a) ∧ ✓ a. - Proof. rewrite auth_both_frac_valid. naive_solver. Qed. + Proof. rewrite auth_both_frac_valid. split; [naive_solver|done]. Qed. (* The reverse direction of the two lemmas below only holds if the camera is discrete. *) - Lemma auth_both_frac_valid_2 q a b : (q ≤ 1)%Qp → ✓ a → b ≼ a → ✓ (â—{q} a â‹… â—¯ b). + Lemma auth_both_frac_valid_2 dq a b : ✓dq → ✓ a → b ≼ a → ✓ (â—{dq} a â‹… â—¯ b). Proof. intros. apply auth_both_frac_valid. naive_solver eauto using cmra_included_includedN. @@ -250,22 +255,22 @@ Section auth. Lemma auth_both_valid_2 a b : ✓ a → b ≼ a → ✓ (â— a â‹… â—¯ b). Proof. intros ??. by apply auth_both_frac_valid_2. Qed. - Lemma auth_both_frac_valid_discrete `{!CmraDiscrete A} q a b : - ✓ (â—{q} a â‹… â—¯ b) ↔ (q ≤ 1)%Qp ∧ b ≼ a ∧ ✓ a. + Lemma auth_both_frac_valid_discrete `{!CmraDiscrete A} dq a b : + ✓ (â—{dq} a â‹… â—¯ b) ↔ ✓dq ∧ b ≼ a ∧ ✓ a. Proof. rewrite auth_both_frac_valid. setoid_rewrite <-cmra_discrete_included_iff. naive_solver eauto using O. Qed. Lemma auth_both_valid_discrete `{!CmraDiscrete A} a b : ✓ (â— a â‹… â—¯ b) ↔ b ≼ a ∧ ✓ a. - Proof. rewrite auth_both_frac_valid_discrete. naive_solver. Qed. + Proof. rewrite auth_both_frac_valid_discrete. split; [naive_solver|done]. Qed. (** Inclusion *) - Lemma auth_auth_frac_includedN n p1 p2 a1 a2 b : - â—{p1} a1 ≼{n} â—{p2} a2 â‹… â—¯ b ↔ (p1 ≤ p2)%Qp ∧ a1 ≡{n}≡ a2. + Lemma auth_auth_frac_includedN n dq1 dq2 a1 a2 b : + â—{dq1} a1 ≼{n} â—{dq2} a2 â‹… â—¯ b ↔ (dq1 ≼ dq2 ∨ dq1 = dq2) ∧ a1 ≡{n}≡ a2. Proof. apply view_auth_frac_includedN. Qed. - Lemma auth_auth_frac_included p1 p2 a1 a2 b : - â—{p1} a1 ≼ â—{p2} a2 â‹… â—¯ b ↔ (p1 ≤ p2)%Qp ∧ a1 ≡ a2. + Lemma auth_auth_frac_included dq1 dq2 a1 a2 b : + â—{dq1} a1 ≼ â—{dq2} a2 â‹… â—¯ b ↔ (dq1 ≼ dq2 ∨ dq1 = dq2) ∧ a1 ≡ a2. Proof. apply view_auth_frac_included. Qed. Lemma auth_auth_includedN n a1 a2 b : â— a1 ≼{n} â— a2 â‹… â—¯ b ↔ a1 ≡{n}≡ a2. @@ -274,20 +279,20 @@ Section auth. â— a1 ≼ â— a2 â‹… â—¯ b ↔ a1 ≡ a2. Proof. apply view_auth_included. Qed. - Lemma auth_frag_includedN n p a b1 b2 : - â—¯ b1 ≼{n} â—{p} a â‹… â—¯ b2 ↔ b1 ≼{n} b2. + Lemma auth_frag_includedN n dq a b1 b2 : + â—¯ b1 ≼{n} â—{dq} a â‹… â—¯ b2 ↔ b1 ≼{n} b2. Proof. apply view_frag_includedN. Qed. - Lemma auth_frag_included p a b1 b2 : - â—¯ b1 ≼ â—{p} a â‹… â—¯ b2 ↔ b1 ≼ b2. + Lemma auth_frag_included dq a b1 b2 : + â—¯ b1 ≼ â—{dq} a â‹… â—¯ b2 ↔ b1 ≼ b2. Proof. apply view_frag_included. Qed. (** The weaker [auth_both_included] lemmas below are a consequence of the [auth_auth_included] and [auth_frag_included] lemmas above. *) - Lemma auth_both_frac_includedN n p1 p2 a1 a2 b1 b2 : - â—{p1} a1 â‹… â—¯ b1 ≼{n} â—{p2} a2 â‹… â—¯ b2 ↔ (p1 ≤ p2)%Qp ∧ a1 ≡{n}≡ a2 ∧ b1 ≼{n} b2. + Lemma auth_both_frac_includedN n dq1 dq2 a1 a2 b1 b2 : + â—{dq1} a1 â‹… â—¯ b1 ≼{n} â—{dq2} a2 â‹… â—¯ b2 ↔ (dq1 ≼ dq2 ∨ dq1 = dq2) ∧ a1 ≡{n}≡ a2 ∧ b1 ≼{n} b2. Proof. apply view_both_frac_includedN. Qed. - Lemma auth_both_frac_included p1 p2 a1 a2 b1 b2 : - â—{p1} a1 â‹… â—¯ b1 ≼ â—{p2} a2 â‹… â—¯ b2 ↔ (p1 ≤ p2)%Qp ∧ a1 ≡ a2 ∧ b1 ≼ b2. + Lemma auth_both_frac_included dq1 dq2 a1 a2 b1 b2 : + â—{dq1} a1 â‹… â—¯ b1 ≼ â—{dq2} a2 â‹… â—¯ b2 ↔ (dq1 ≼ dq2 ∨ dq1 = dq2) ∧ a1 ≡ a2 ∧ b1 ≼ b2. Proof. apply view_both_frac_included. Qed. Lemma auth_both_includedN n a1 a2 b1 b2 : â— a1 â‹… â—¯ b1 ≼{n} â— a2 â‹… â—¯ b2 ↔ a1 ≡{n}≡ a2 ∧ b1 ≼{n} b2. @@ -314,9 +319,11 @@ Section auth. intros. etrans; first exact: auth_update_alloc. exact: cmra_update_op_l. Qed. + Lemma auth_update_auth_persist dq a : â—{dq} a ~~> â—â–¡ a. + Proof. apply view_update_auth_persist. Qed. - Lemma auth_update_frac_alloc q a b `{!CoreId b} : - b ≼ a → â—{q} a ~~> â—{q} a â‹… â—¯ b. + Lemma auth_update_frac_alloc dq a b `{!CoreId b} : + b ≼ a → â—{dq} a ~~> â—{dq} a â‹… â—¯ b. Proof. intros Ha%(core_id_extract _ _). apply view_update_frac_alloc=> n bf [??]. split; [|done]. rewrite Ha (comm _ a). by apply cmra_monoN_l. diff --git a/iris/algebra/dfrac.v b/iris/algebra/dfrac.v index e0329dbe3c7b8252770aaaf1caed39b58ad9358f..f38afd0e4f0eb0c2c05cb4755ba6add697fcd2f1 100644 --- a/iris/algebra/dfrac.v +++ b/iris/algebra/dfrac.v @@ -153,7 +153,7 @@ Section dfrac. - by destruct (Qp_add_id_free q q2). - by destruct (Qp_add_id_free q q1). Qed. - Global Instance frac_id_free q : IdFree (DfracOwn q). + Global Instance dfrac_own_id_free q : IdFree (DfracOwn q). Proof. intros [q'| |q'] _ [=]. by apply (Qp_add_id_free q q'). Qed. Global Instance dfrac_discarded_core_id : CoreId DfracDiscarded. Proof. by constructor. Qed. diff --git a/iris/algebra/lib/gmap_view.v b/iris/algebra/lib/gmap_view.v index a2b8591e4b9893edac23db48c99936e01c8ac173..7b27e2c4f2e7a0bcd43a93c7b6b3e59b73b08c74 100644 --- a/iris/algebra/lib/gmap_view.v +++ b/iris/algebra/lib/gmap_view.v @@ -1,5 +1,5 @@ From Coq.QArith Require Import Qcanon. -From iris.algebra Require Export view gmap dfrac. +From iris.algebra Require Export view gmap frac dfrac. From iris.algebra Require Import local_updates proofmode_classes big_op. From iris.prelude Require Import options. @@ -12,7 +12,7 @@ persistent read-only ownership of a key. The key frame-preserving updates are [gmap_view_alloc] to allocate a new key, [gmap_view_update] to update a key given full ownership of the corresponding -fragment, and [gmap_view_freeze] to make a key read-only by discarding any +fragment, and [gmap_view_persist] to make a key read-only by discarding any fraction of the corresponding fragment. Crucially, the latter does not require owning the authoritative element. @@ -138,7 +138,7 @@ Section definitions. Context {K : Type} `{Countable K} {V : ofe}. Definition gmap_view_auth (q : frac) (m : gmap K V) : gmap_viewR K V := - â—V{q} m. + â—V{#q} m. Definition gmap_view_frag (k : K) (dq : dfrac) (v : V) : gmap_viewR K V := â—¯V {[k := (dq, to_agree v)]}. End definitions. @@ -178,7 +178,7 @@ Section lemmas. (** Composition and validity *) Lemma gmap_view_auth_frac_op p q m : gmap_view_auth (p + q) m ≡ gmap_view_auth p m â‹… gmap_view_auth q m. - Proof. apply view_auth_frac_op. Qed. + Proof. by rewrite /gmap_view_auth -dfrac_op_own view_auth_frac_op. Qed. Global Instance gmap_view_auth_frac_is_op q q1 q2 m : IsOp q q1 q2 → IsOp' (gmap_view_auth q m) (gmap_view_auth q1 m) (gmap_view_auth q2 m). Proof. rewrite /gmap_view_auth. apply _. Qed. diff --git a/iris/algebra/lib/gset_bij.v b/iris/algebra/lib/gset_bij.v index 7011f8ca0a22629e79548afaeb92f21d661a2362..b4d7d4b731a4d6e37e22262808676b8fe7338e5b 100644 --- a/iris/algebra/lib/gset_bij.v +++ b/iris/algebra/lib/gset_bij.v @@ -106,7 +106,7 @@ Definition gset_bijUR A B `{Countable A, Countable B} : ucmra := viewUR (gset_bij_view_rel (A:=A) (B:=B)). Definition gset_bij_auth `{Countable A, Countable B} - (q : Qp) (L : gset (A * B)) : gset_bij A B := â—V{q} L â‹… â—¯V L. + (dq : dfrac) (L : gset (A * B)) : gset_bij A B := â—V{dq} L â‹… â—¯V L. Definition gset_bij_elem `{Countable A, Countable B} (a : A) (b : B) : gset_bij A B := â—¯V {[a, b]}. @@ -118,11 +118,11 @@ Section gset_bij. Global Instance gset_bij_elem_core_id a b : CoreId (gset_bij_elem a b). Proof. apply _. Qed. - Lemma gset_bij_auth_frac_op q1 q2 L : - gset_bij_auth q1 L â‹… gset_bij_auth q2 L ≡ gset_bij_auth (q1 + q2) L. + Lemma gset_bij_auth_frac_op dq1 dq2 L : + gset_bij_auth dq1 L â‹… gset_bij_auth dq2 L ≡ gset_bij_auth (dq1 â‹… dq2) L. Proof. rewrite /gset_bij_auth view_auth_frac_op. - rewrite (comm _ (â—V{q2} _)) -!assoc (assoc _ (â—¯V _)). + rewrite (comm _ (â—V{dq2} _)) -!assoc (assoc _ (â—¯V _)). by rewrite -core_id_dup (comm _ (â—¯V _)). Qed. @@ -132,21 +132,21 @@ Section gset_bij. setoid_rewrite gset_bij_view_rel_iff. naive_solver eauto using O. Qed. - Lemma gset_bij_auth_valid L : ✓ gset_bij_auth 1 L ↔ gset_bijective L. + Lemma gset_bij_auth_valid L : ✓ gset_bij_auth (DfracOwn 1) L ↔ gset_bijective L. Proof. rewrite gset_bij_auth_frac_valid. naive_solver by done. Qed. Lemma gset_bij_auth_empty_frac_valid q : ✓ gset_bij_auth (A:=A) (B:=B) q ∅ ↔ ✓ q. Proof. rewrite gset_bij_auth_frac_valid. naive_solver eauto using gset_bijective_empty. Qed. - Lemma gset_bij_auth_empty_valid : ✓ gset_bij_auth (A:=A) (B:=B) 1 ∅. + Lemma gset_bij_auth_empty_valid : ✓ gset_bij_auth (A:=A) (B:=B) (DfracOwn 1) ∅. Proof. by apply gset_bij_auth_empty_frac_valid. Qed. - Lemma gset_bij_auth_frac_op_valid q1 q2 L1 L2 : - ✓ (gset_bij_auth q1 L1 â‹… gset_bij_auth q2 L2) - ↔ ✓ (q1 + q2)%Qp ∧ L1 = L2 ∧ gset_bijective L1. + Lemma gset_bij_auth_frac_op_valid dq1 dq2 L1 L2 : + ✓ (gset_bij_auth dq1 L1 â‹… gset_bij_auth dq2 L2) + ↔ ✓ (dq1 â‹… dq2) ∧ L1 = L2 ∧ gset_bijective L1. Proof. - rewrite /gset_bij_auth (comm _ (â—V{q2} _)) -!assoc (assoc _ (â—¯V _)). + rewrite /gset_bij_auth (comm _ (â—V{dq2} _)) -!assoc (assoc _ (â—¯V _)). rewrite -view_frag_op (comm _ (â—¯V _)) assoc. split. - move=> /cmra_valid_op_l /view_auth_frac_op_valid. setoid_rewrite gset_bij_view_rel_iff. naive_solver eauto using 0. @@ -154,7 +154,7 @@ Section gset_bij. apply view_both_frac_valid. setoid_rewrite gset_bij_view_rel_iff. naive_solver. Qed. Lemma gset_bij_auth_op_valid L1 L2 : - ✓ (gset_bij_auth 1 L1 â‹… gset_bij_auth 1 L2) ↔ False. + ✓ (gset_bij_auth (DfracOwn 1) L1 â‹… gset_bij_auth (DfracOwn 1) L2) ↔ False. Proof. rewrite gset_bij_auth_frac_op_valid. naive_solver. Qed. Lemma bij_both_frac_valid q L a b : @@ -165,7 +165,7 @@ Section gset_bij. set_solver by eauto using O. Qed. Lemma bij_both_valid L a b : - ✓ (gset_bij_auth 1 L â‹… gset_bij_elem a b) ↔ gset_bijective L ∧ (a, b) ∈ L. + ✓ (gset_bij_auth (DfracOwn 1) L â‹… gset_bij_elem a b) ↔ gset_bijective L ∧ (a, b) ∈ L. Proof. rewrite bij_both_frac_valid. naive_solver by done. Qed. Lemma gset_bij_elem_agree a1 b1 a2 b2 : @@ -185,7 +185,7 @@ Section gset_bij. Lemma gset_bij_auth_extend {L} a b : (∀ b', (a, b') ∉ L) → (∀ a', (a', b) ∉ L) → - gset_bij_auth 1 L ~~> gset_bij_auth 1 ({[(a, b)]} ∪ L). + gset_bij_auth (DfracOwn 1) L ~~> gset_bij_auth (DfracOwn 1) ({[(a, b)]} ∪ L). Proof. intros. apply view_update=> n bijL. rewrite !gset_bij_view_rel_iff gset_op. diff --git a/iris/algebra/lib/mono_nat.v b/iris/algebra/lib/mono_nat.v index d7d312caa50e89619c5a8d42660bedf5ce18bcae..b8ee6dd0b7c3dd984842667afc3637ce63c15b99 100644 --- a/iris/algebra/lib/mono_nat.v +++ b/iris/algebra/lib/mono_nat.v @@ -14,7 +14,7 @@ fragment at the same value so that lemma [mono_nat_included], which states that [mono_nat_lb n ≼ mono_nat_auth q n], does not require a frame-preserving update. *) Definition mono_nat_auth (q : Qp) (n : nat) : mono_nat := - â—{q} MaxNat n â‹… â—¯ MaxNat n. + â—{#q} MaxNat n â‹… â—¯ MaxNat n. Definition mono_nat_lb (n : nat) : mono_nat := â—¯ MaxNat n. Section mono_nat. @@ -26,8 +26,8 @@ Section mono_nat. Lemma mono_nat_auth_frac_op q1 q2 n : mono_nat_auth q1 n â‹… mono_nat_auth q2 n ≡ mono_nat_auth (q1 + q2) n. Proof. - rewrite /mono_nat_auth auth_auth_frac_op. - rewrite (comm _ (â—{q2} _)) -!assoc (assoc _ (â—¯ _)). + rewrite /mono_nat_auth -dfrac_op_own auth_auth_frac_op. + rewrite (comm _ (â—{#q2} _)) -!assoc (assoc _ (â—¯ _)). by rewrite -core_id_dup (comm _ (â—¯ _)). Qed. @@ -60,7 +60,7 @@ Section mono_nat. Lemma mono_nat_auth_frac_op_valid q1 q2 n1 n2 : ✓ (mono_nat_auth q1 n1 â‹… mono_nat_auth q2 n2) ↔ (q1 + q2 ≤ 1)%Qp ∧ n1 = n2. Proof. - rewrite /mono_nat_auth (comm _ (â—{q2} _)) -!assoc (assoc _ (â—¯ _)). + rewrite /mono_nat_auth (comm _ (â—{#q2} _)) -!assoc (assoc _ (â—¯ _)). rewrite -auth_frag_op (comm _ (â—¯ _)) assoc. split. - move=> /cmra_valid_op_l /auth_auth_frac_op_valid. naive_solver. - intros [? ->]. rewrite -core_id_dup -auth_auth_frac_op. diff --git a/iris/algebra/view.v b/iris/algebra/view.v index 47ecc5bdca7e99b624349c817e4ad924a37e77fa..b265f5db9f72304a28de5bcf7a77d6c7fc5188be 100644 --- a/iris/algebra/view.v +++ b/iris/algebra/view.v @@ -1,13 +1,13 @@ -From iris.algebra Require Export updates local_updates frac agree. +From iris.algebra Require Export updates local_updates dfrac agree. From iris.algebra Require Import proofmode_classes big_op. From iris.prelude Require Import options. (** The view camera with fractional authoritative elements *) (** The view camera, which is reminiscent of the views framework, is used to -provide a logical/"small-footprint" "view" of some "large-footprint" piece of -data, which can be shared in the separation logic sense, i.e., different parts -of the data can be separately owned by different functions or threads. This is -achieved using the two elements of the view camera: + provide a logical/"small-footprint" "view" of some "large-footprint" piece of + data, which can be shared in the separation logic sense, i.e., different parts + of the data can be separately owned by different functions or threads. This is + achieved using the two elements of the view camera: - The authoritative element [â—V a], which describes the data under consideration. - The fragment [â—¯V b], which provides a logical view of the data [a]. @@ -16,10 +16,10 @@ To enable sharing of the fragments, the type of fragments is equipped with a camera structure so ownership of fragments can be split. Concretely, fragments enjoy the rule [â—¯V (b1 â‹… b2) = â—¯V b1 â‹… â—¯V b2]. -To enable sharing of the authoritative element [â—V{q} a], it is equipped with a -fraction [q]. Updates are only possible with the full authoritative element -[â—V a] (syntax for [â—V{1} a]]), while fractional authoritative elements have -agreement, i.e., [✓ (â—V{p1} a1 â‹… â—V{p2} a2) → a1 ≡ a2]. *) +To enable sharing of the authoritative element [â—V{dq} a], it is equipped with a +discardable fraction [dq]. Updates are only possible with the full authoritative +element [â—V a] (syntax for [â—V{#1} a]]), while fractional authoritative elements +have agreement, i.e., [✓ (â—V{dq1} a1 â‹… â—V{dq2} a2) → a1 ≡ a2]. *) (** * The view relation *) (** To relate the authoritative element [a] to its possible fragments [b], the @@ -75,7 +75,7 @@ Class ViewRelDiscrete {A B} (rel : view_rel A B) := always be constructed using [â—V] and [â—¯V], and never using the constructor [View]. *) Record view {A B} (rel : nat → A → B → Prop) := - View { view_auth_proj : option (frac * agree A) ; view_frag_proj : B }. + View { view_auth_proj : option (dfrac * agree A) ; view_frag_proj : B }. Add Printing Constructor view. Global Arguments View {_ _ _} _ _. Global Arguments view_auth_proj {_ _ _} _. @@ -84,16 +84,20 @@ Global Instance: Params (@View) 3 := {}. Global Instance: Params (@view_auth_proj) 3 := {}. Global Instance: Params (@view_frag_proj) 3 := {}. -Definition view_auth {A B} {rel : view_rel A B} (q : Qp) (a : A) : view rel := - View (Some (q, to_agree a)) ε. +Definition view_auth {A B} {rel : view_rel A B} (dq : dfrac) (a : A) : view rel := + View (Some (dq, to_agree a)) ε. Definition view_frag {A B} {rel : view_rel A B} (b : B) : view rel := View None b. Typeclasses Opaque view_auth view_frag. Global Instance: Params (@view_auth) 3 := {}. Global Instance: Params (@view_frag) 3 := {}. -Notation "â—V{ q } a" := (view_auth q a) (at level 20, format "â—V{ q } a"). -Notation "â—V a" := (view_auth 1 a) (at level 20). +(** FIXME: Refactor these notations using custom entries once Coq bug #13654 +has been fixed. *) +Notation "â—V{ dq } a" := (view_auth dq a) (at level 20, format "â—V{ dq } a"). +Notation "â—V{# q } a" := (view_auth (DfracOwn q) a) (at level 20, format "â—V{# q } a"). +Notation "â—Vâ–¡ a" := (view_auth DfracDiscarded a) (at level 20, format "â—Vâ–¡ a"). +Notation "â—V a" := (view_auth (DfracOwn 1) a) (at level 20). Notation "â—¯V a" := (view_frag a) (at level 20). (** * The OFE structure *) @@ -103,7 +107,7 @@ been needed in practice. *) Section ofe. Context {A B : ofe} (rel : nat → A → B → Prop). Implicit Types a : A. - Implicit Types ag : option (frac * agree A). + Implicit Types ag : option (dfrac * agree A). Implicit Types b : B. Implicit Types x y : view rel. @@ -144,13 +148,13 @@ End ofe. Section cmra. Context {A B} (rel : view_rel A B). Implicit Types a : A. - Implicit Types ag : option (frac * agree A). + Implicit Types ag : option (dfrac * agree A). Implicit Types b : B. Implicit Types x y : view rel. - Global Instance view_auth_ne q : NonExpansive (@view_auth A B rel q). + Global Instance view_auth_ne dq : NonExpansive (@view_auth A B rel dq). Proof. solve_proper. Qed. - Global Instance view_auth_proper q : Proper ((≡) ==> (≡)) (@view_auth A B rel q). + Global Instance view_auth_proper dq : Proper ((≡) ==> (≡)) (@view_auth A B rel dq). Proof. solve_proper. Qed. Global Instance view_frag_ne : NonExpansive (@view_frag A B rel). Proof. done. Qed. @@ -160,12 +164,12 @@ Section cmra. Global Instance view_auth_dist_inj n : Inj2 (=) (dist n) (dist n) (@view_auth A B rel). Proof. - intros p1 a1 p2 a2 [Hag ?]; inversion Hag as [?? [??]|]; simplify_eq/=. + intros dq1 a1 dq2 a2 [Hag ?]; inversion Hag as [?? [??]|]; simplify_eq/=. split; [done|]. by apply (inj to_agree). Qed. Global Instance view_auth_inj : Inj2 (=) (≡) (≡) (@view_auth A B rel). Proof. - intros p1 a1 p2 a2 [Hag ?]; inversion Hag as [?? [??]|]; simplify_eq/=. + intros dq1 a1 dq2 a2 [Hag ?]; inversion Hag as [?? [??]|]; simplify_eq/=. split; [done|]. by apply (inj to_agree). Qed. Global Instance view_frag_dist_inj n : Inj (dist n) (dist n) (@view_frag A B rel). @@ -175,14 +179,14 @@ Section cmra. Local Instance view_valid_instance : Valid (view rel) := λ x, match view_auth_proj x with - | Some (q, ag) => - ✓ q ∧ (∀ n, ∃ a, ag ≡{n}≡ to_agree a ∧ rel n a (view_frag_proj x)) + | Some (dq, ag) => + ✓ dq ∧ (∀ n, ∃ a, ag ≡{n}≡ to_agree a ∧ rel n a (view_frag_proj x)) | None => ∀ n, ∃ a, rel n a (view_frag_proj x) end. Local Instance view_validN_instance : ValidN (view rel) := λ n x, match view_auth_proj x with - | Some (q, ag) => - ✓{n} q ∧ ∃ a, ag ≡{n}≡ to_agree a ∧ rel n a (view_frag_proj x) + | Some (dq, ag) => + ✓{n} dq ∧ ∃ a, ag ≡{n}≡ to_agree a ∧ rel n a (view_frag_proj x) | None => ∃ a, rel n a (view_frag_proj x) end. Local Instance view_pcore_instance : PCore (view rel) := λ x, @@ -193,32 +197,32 @@ Section cmra. Local Definition view_valid_eq : valid = λ x, match view_auth_proj x with - | Some (q, ag) => - ✓ q ∧ (∀ n, ∃ a, ag ≡{n}≡ to_agree a ∧ rel n a (view_frag_proj x)) + | Some (dq, ag) => + ✓ dq ∧ (∀ n, ∃ a, ag ≡{n}≡ to_agree a ∧ rel n a (view_frag_proj x)) | None => ∀ n, ∃ a, rel n a (view_frag_proj x) end := eq_refl _. Local Definition view_validN_eq : - validN = λ n x, + validN = λ n x, match view_auth_proj x with - | Some (q, ag) => ✓{n} q ∧ ∃ a, ag ≡{n}≡ to_agree a ∧ rel n a (view_frag_proj x) + | Some (dq, ag) => ✓{n} dq ∧ ∃ a, ag ≡{n}≡ to_agree a ∧ rel n a (view_frag_proj x) | None => ∃ a, rel n a (view_frag_proj x) end := eq_refl _. Lemma view_cmra_mixin : CmraMixin (view rel). Proof. apply (iso_cmra_mixin_restrict - (λ x : option (frac * agree A) * B, View x.1 x.2) + (λ x : option (dfrac * agree A) * B, View x.1 x.2) (λ x, (view_auth_proj x, view_frag_proj x))); try done. - intros [x b]. by rewrite /= pair_pcore !cmra_pcore_core. - - intros n [[[q ag]|] b]; rewrite /= view_validN_eq /=. + - intros n [[[dq ag]|] b]; rewrite /= view_validN_eq /=. + intros (?&a&->&?). repeat split; simpl; [done|]. by eapply view_rel_validN. + intros [a ?]. repeat split; simpl. by eapply view_rel_validN. - rewrite view_validN_eq. intros n [x1 b1] [x2 b2] [Hx ?]; simpl in *; destruct Hx as [[q1 ag1] [q2 ag2] [??]|]; intros ?; by ofe_subst. - rewrite view_valid_eq view_validN_eq. - intros [[[q aa]|] b]; rewrite /= ?cmra_valid_validN; naive_solver. - - rewrite view_validN_eq=> n [[[q ag]|] b] /=. + intros [[[dq aa]|] b]; rewrite /= ?cmra_valid_validN; naive_solver. + - rewrite view_validN_eq=> n [[[dq ag]|] b] /=. + intros [? (a&?&?)]; split; [done|]. exists a; split; [by eauto using dist_S|]. apply view_rel_mono with (S n) a b; auto with lia. @@ -237,8 +241,8 @@ Section cmra. Qed. Canonical Structure viewR := Cmra (view rel) view_cmra_mixin. - Global Instance view_auth_discrete q a : - Discrete a → Discrete (ε : B) → Discrete (â—V{q} a : view rel). + Global Instance view_auth_discrete dq a : + Discrete a → Discrete (ε : B) → Discrete (â—V{dq} a : view rel). Proof. intros. apply View_discrete; apply _. Qed. Global Instance view_frag_discrete b : Discrete b → Discrete (â—¯V b : view rel). @@ -247,7 +251,7 @@ Section cmra. OfeDiscrete A → CmraDiscrete B → ViewRelDiscrete rel → CmraDiscrete viewR. Proof. - split; [apply _|]=> -[[[q ag]|] b]; rewrite view_valid_eq view_validN_eq /=. + split; [apply _|]=> -[[[dq ag]|] b]; rewrite view_valid_eq view_validN_eq /=. - rewrite -cmra_discrete_valid_iff. setoid_rewrite <-(discrete_iff _ ag). naive_solver. - naive_solver. @@ -264,13 +268,13 @@ Section cmra. Canonical Structure viewUR := Ucmra (view rel) view_ucmra_mixin. (** Operation *) - Lemma view_auth_frac_op p1 p2 a : â—V{p1 + p2} a ≡ â—V{p1} a â‹… â—V{p2} a. + Lemma view_auth_frac_op dq1 dq2 a : â—V{dq1 â‹… dq2} a ≡ â—V{dq1} a â‹… â—V{dq2} a. Proof. intros; split; simpl; last by rewrite left_id. by rewrite -Some_op -pair_op agree_idemp. Qed. - Global Instance view_auth_frac_is_op q q1 q2 a : - IsOp q q1 q2 → IsOp' (â—V{q} a) (â—V{q1} a) (â—V{q2} a). + Global Instance view_auth_frac_is_op dq dq1 dq2 a : + IsOp dq dq1 dq2 → IsOp' (â—V{dq} a) (â—V{dq1} a) (â—V{dq2} a). Proof. rewrite /IsOp' /IsOp => ->. by rewrite -view_auth_frac_op. Qed. Lemma view_frag_op b1 b2 : â—¯V (b1 â‹… b2) = â—¯V b1 â‹… â—¯V b2. @@ -302,31 +306,31 @@ Section cmra. Proof. apply (big_opMS_commute _). Qed. (** Validity *) - Lemma view_auth_frac_op_invN n p1 a1 p2 a2 : - ✓{n} (â—V{p1} a1 â‹… â—V{p2} a2) → a1 ≡{n}≡ a2. + Lemma view_auth_frac_op_invN n dq1 a1 dq2 a2 : + ✓{n} (â—V{dq1} a1 â‹… â—V{dq2} a2) → a1 ≡{n}≡ a2. Proof. rewrite /op /view_op_instance /= left_id -Some_op -pair_op view_validN_eq /=. intros (?&?& Eq &?). apply (inj to_agree), agree_op_invN. by rewrite Eq. Qed. - Lemma view_auth_frac_op_inv p1 a1 p2 a2 : ✓ (â—V{p1} a1 â‹… â—V{p2} a2) → a1 ≡ a2. + Lemma view_auth_frac_op_inv dq1 a1 dq2 a2 : ✓ (â—V{dq1} a1 â‹… â—V{dq2} a2) → a1 ≡ a2. Proof. intros ?. apply equiv_dist. intros n. by eapply view_auth_frac_op_invN, cmra_valid_validN. Qed. - Lemma view_auth_frac_op_inv_L `{!LeibnizEquiv A} p1 a1 p2 a2 : - ✓ (â—V{p1} a1 â‹… â—V{p2} a2) → a1 = a2. + Lemma view_auth_frac_op_inv_L `{!LeibnizEquiv A} dq1 a1 dq2 a2 : + ✓ (â—V{dq1} a1 â‹… â—V{dq2} a2) → a1 = a2. Proof. by intros ?%view_auth_frac_op_inv%leibniz_equiv. Qed. - Lemma view_auth_frac_validN n q a : ✓{n} (â—V{q} a) ↔ (q ≤ 1)%Qp ∧ rel n a ε. + Lemma view_auth_frac_validN n dq a : ✓{n} (â—V{dq} a) ↔ ✓{n}dq ∧ rel n a ε. Proof. rewrite view_validN_eq /=. apply and_iff_compat_l. split; [|by eauto]. by intros [? [->%(inj to_agree) ?]]. Qed. Lemma view_auth_validN n a : ✓{n} (â—V a) ↔ rel n a ε. - Proof. rewrite view_auth_frac_validN. naive_solver. Qed. + Proof. rewrite view_auth_frac_validN. split; [naive_solver|done]. Qed. - Lemma view_auth_frac_op_validN n q1 q2 a1 a2 : - ✓{n} (â—V{q1} a1 â‹… â—V{q2} a2) ↔ (q1 + q2 ≤ 1)%Qp ∧ a1 ≡{n}≡ a2 ∧ rel n a1 ε. + Lemma view_auth_frac_op_validN n dq1 dq2 a1 a2 : + ✓{n} (â—V{dq1} a1 â‹… â—V{dq2} a2) ↔ ✓(dq1 â‹… dq2) ∧ a1 ≡{n}≡ a2 ∧ rel n a1 ε. Proof. split. - intros Hval. assert (a1 ≡{n}≡ a2) as Ha by eauto using view_auth_frac_op_invN. @@ -339,28 +343,28 @@ Section cmra. Lemma view_frag_validN n b : ✓{n} (â—¯V b) ↔ ∃ a, rel n a b. Proof. done. Qed. - Lemma view_both_frac_validN n q a b : - ✓{n} (â—V{q} a â‹… â—¯V b) ↔ (q ≤ 1)%Qp ∧ rel n a b. + Lemma view_both_frac_validN n dq a b : + ✓{n} (â—V{dq} a â‹… â—¯V b) ↔ ✓dq ∧ rel n a b. Proof. rewrite view_validN_eq /=. apply and_iff_compat_l. setoid_rewrite (left_id _ _ b). split; [|by eauto]. by intros [?[->%(inj to_agree)]]. Qed. Lemma view_both_validN n a b : ✓{n} (â—V a â‹… â—¯V b) ↔ rel n a b. - Proof. rewrite view_both_frac_validN. naive_solver. Qed. + Proof. rewrite view_both_frac_validN. split; [naive_solver|done]. Qed. - Lemma view_auth_frac_valid q a : ✓ (â—V{q} a) ↔ (q ≤ 1)%Qp ∧ ∀ n, rel n a ε. + Lemma view_auth_frac_valid dq a : ✓ (â—V{dq} a) ↔ ✓dq ∧ ∀ n, rel n a ε. Proof. rewrite view_valid_eq /=. apply and_iff_compat_l. split; [|by eauto]. intros H n. by destruct (H n) as [? [->%(inj to_agree) ?]]. Qed. Lemma view_auth_valid a : ✓ (â—V a) ↔ ∀ n, rel n a ε. - Proof. rewrite view_auth_frac_valid. naive_solver. Qed. + Proof. rewrite view_auth_frac_valid. split; [naive_solver|done]. Qed. - Lemma view_auth_frac_op_valid q1 q2 a1 a2 : - ✓ (â—V{q1} a1 â‹… â—V{q2} a2) ↔ (q1 + q2 ≤ 1)%Qp ∧ a1 ≡ a2 ∧ ∀ n, rel n a1 ε. + Lemma view_auth_frac_op_valid dq1 dq2 a1 a2 : + ✓ (â—V{dq1} a1 â‹… â—V{dq2} a2) ↔ ✓(dq1 â‹… dq2) ∧ a1 ≡ a2 ∧ ∀ n, rel n a1 ε. Proof. - rewrite !cmra_valid_validN equiv_dist. setoid_rewrite view_auth_frac_op_validN. + rewrite 1!cmra_valid_validN equiv_dist. setoid_rewrite view_auth_frac_op_validN. split; last naive_solver. intros Hv. split; last naive_solver. apply (Hv 0). Qed. @@ -370,37 +374,37 @@ Section cmra. Lemma view_frag_valid b : ✓ (â—¯V b) ↔ ∀ n, ∃ a, rel n a b. Proof. done. Qed. - Lemma view_both_frac_valid q a b : ✓ (â—V{q} a â‹… â—¯V b) ↔ (q ≤ 1)%Qp ∧ ∀ n, rel n a b. + Lemma view_both_frac_valid dq a b : ✓ (â—V{dq} a â‹… â—¯V b) ↔ ✓dq ∧ ∀ n, rel n a b. Proof. rewrite view_valid_eq /=. apply and_iff_compat_l. setoid_rewrite (left_id _ _ b). split; [|by eauto]. intros H n. by destruct (H n) as [?[->%(inj to_agree)]]. Qed. Lemma view_both_valid a b : ✓ (â—V a â‹… â—¯V b) ↔ ∀ n, rel n a b. - Proof. rewrite view_both_frac_valid. naive_solver. Qed. + Proof. rewrite view_both_frac_valid. split; [naive_solver|done]. Qed. (** Inclusion *) - Lemma view_auth_frac_includedN n p1 p2 a1 a2 b : - â—V{p1} a1 ≼{n} â—V{p2} a2 â‹… â—¯V b ↔ (p1 ≤ p2)%Qp ∧ a1 ≡{n}≡ a2. + Lemma view_auth_frac_includedN n dq1 dq2 a1 a2 b : + â—V{dq1} a1 ≼{n} â—V{dq2} a2 â‹… â—¯V b ↔ (dq1 ≼ dq2 ∨ dq1 = dq2) ∧ a1 ≡{n}≡ a2. Proof. split. - intros [[[[qf agf]|] bf] [[?%(discrete_iff _ _) ?]%(inj Some) _]]; simplify_eq/=. - + split; [apply Qp_le_add_l|]. apply to_agree_includedN. by exists agf. - + split; [done|]. by apply (inj to_agree). - - intros [[[q ->]%frac_included| ->]%Qp_le_lteq ->]. + + split; [left; apply cmra_included_l|]. apply to_agree_includedN. by exists agf. + + split; [right; done|]. by apply (inj to_agree). + - intros [[[? ->]| ->] ->]. + rewrite view_auth_frac_op -assoc. apply cmra_includedN_l. + apply cmra_includedN_l. Qed. - Lemma view_auth_frac_included p1 p2 a1 a2 b : - â—V{p1} a1 ≼ â—V{p2} a2 â‹… â—¯V b ↔ (p1 ≤ p2)%Qp ∧ a1 ≡ a2. + Lemma view_auth_frac_included dq1 dq2 a1 a2 b : + â—V{dq1} a1 ≼ â—V{dq2} a2 â‹… â—¯V b ↔ (dq1 ≼ dq2 ∨ dq1 = dq2) ∧ a1 ≡ a2. Proof. intros. split. - split. + by eapply (view_auth_frac_includedN 0), cmra_included_includedN. + apply equiv_dist=> n. by eapply view_auth_frac_includedN, cmra_included_includedN. - - intros [[[q ->]%frac_included| ->]%Qp_le_lteq ->]. + - intros [[[dq ->]| ->] ->]. + rewrite view_auth_frac_op -assoc. apply cmra_included_l. + apply cmra_included_l. Qed. @@ -430,8 +434,9 @@ Section cmra. (** The weaker [view_both_included] lemmas below are a consequence of the [view_auth_included] and [view_frag_included] lemmas above. *) - Lemma view_both_frac_includedN n p1 p2 a1 a2 b1 b2 : - â—V{p1} a1 â‹… â—¯V b1 ≼{n} â—V{p2} a2 â‹… â—¯V b2 ↔ (p1 ≤ p2)%Qp ∧ a1 ≡{n}≡ a2 ∧ b1 ≼{n} b2. + Lemma view_both_frac_includedN n dq1 dq2 a1 a2 b1 b2 : + â—V{dq1} a1 â‹… â—¯V b1 ≼{n} â—V{dq2} a2 â‹… â—¯V b2 ↔ + (dq1 ≼ dq2 ∨ dq1 = dq2) ∧ a1 ≡{n}≡ a2 ∧ b1 ≼{n} b2. Proof. split. - intros. rewrite assoc. split. @@ -440,8 +445,9 @@ Section cmra. - intros (?&->&?bf&->). rewrite (comm _ b1) view_frag_op assoc. by apply cmra_monoN_r, view_auth_frac_includedN. Qed. - Lemma view_both_frac_included p1 p2 a1 a2 b1 b2 : - â—V{p1} a1 â‹… â—¯V b1 ≼ â—V{p2} a2 â‹… â—¯V b2 ↔ (p1 ≤ p2)%Qp ∧ a1 ≡ a2 ∧ b1 ≼ b2. + Lemma view_both_frac_included dq1 dq2 a1 a2 b1 b2 : + â—V{dq1} a1 â‹… â—¯V b1 ≼ â—V{dq2} a2 â‹… â—¯V b2 ↔ + (dq1 ≼ dq2 ∨ dq1 = dq2) ∧ a1 ≡ a2 ∧ b1 ≼ b2. Proof. split. - intros. rewrite assoc. split. @@ -462,7 +468,7 @@ Section cmra. (∀ n bf, rel n a (b â‹… bf) → rel n a' (b' â‹… bf)) → â—V a â‹… â—¯V b ~~> â—V a' â‹… â—¯V b'. Proof. - intros Hup; apply cmra_total_update=> n [[[q ag]|] bf] [/=]. + intros Hup; apply cmra_total_update=> n [[[dq ag]|] bf] [/=]. { by intros []%(exclusiveN_l _ _). } intros _ (a0 & <-%(inj to_agree) & Hrel). split; simpl; [done|]. exists a'; split; [done|]. revert Hrel. rewrite !left_id. apply Hup. @@ -490,16 +496,23 @@ Section cmra. intros Hup. rewrite -(right_id _ _ (â—V a)) -(right_id _ _ (â—V a')). apply view_update=> n bf. rewrite !left_id. apply Hup. Qed. + Lemma view_update_auth_persist dq a : â—V{dq} a ~~> â—Vâ–¡ a. + Proof. + apply cmra_total_update. + move=> n [[[dq' ag]|] bf] [Hv ?]; last done. split; last done. + by apply (dfrac_discard_update dq _ (Some dq')). + Qed. + Lemma view_update_frag b b' : (∀ a n bf, rel n a (b â‹… bf) → rel n a (b' â‹… bf)) → â—¯V b ~~> â—¯V b'. Proof. - rewrite !cmra_total_update view_validN_eq=> ? n [[[q ag]|] bf]; naive_solver. + rewrite !cmra_total_update view_validN_eq=> ? n [[[dq ag]|] bf]; naive_solver. Qed. - Lemma view_update_frac_alloc q a b : + Lemma view_update_frac_alloc dq a b : (∀ n bf, rel n a bf → rel n a (b â‹… bf)) → - â—V{q} a ~~> â—V{q} a â‹… â—¯V b. + â—V{dq} a ~~> â—V{dq} a â‹… â—¯V b. Proof. intros Hup. apply cmra_total_update=> n [[[p ag]|] bf] [/=]. - intros ? (a0 & Hag & Hrel). split; simpl; [done|]. @@ -512,18 +525,19 @@ Section cmra. Qed. Lemma view_local_update a b0 b1 a' b0' b1' : - (b0, b1) ~l~> (b0', b1') → + (b0, b1) ~l~> (b0', b1') → (∀ n, view_rel_holds rel n a b0 → view_rel_holds rel n a' b0') → (â—V a â‹… â—¯V b0, â—V a â‹… â—¯V b1) ~l~> (â—V a' â‹… â—¯V b0', â—V a' â‹… â—¯V b1'). Proof. rewrite !local_update_unital. - move=> Hup Hrel n [[[q ag]|] bf] /view_both_validN Hrel' [/=]. - - rewrite right_id -Some_op -pair_op frac_op=> /Some_dist_inj [/= H1q _]. - by destruct (Qp_add_id_free 1 q). + move=> Hup Hrel n [[[qd ag]|] bf] /view_both_validN Hrel' [/=]. + - rewrite right_id -Some_op -pair_op => /Some_dist_inj [/= H1q _]. + by destruct (id_free_r (DfracOwn 1) qd). - rewrite !left_id=> _ Hb0. destruct (Hup n bf) as [? Hb0']; [by eauto using view_rel_validN..|]. split; [apply view_both_validN; by auto|]. by rewrite -assoc Hb0'. Qed. + End cmra. (** * Utilities to construct functors *) @@ -592,6 +606,6 @@ Proof. by rewrite -agree_map_to_agree -Hag. - intros [o bf]. apply Some_proper; rewrite /view_map /=. f_equiv; by rewrite cmra_morphism_core. - - intros [[[p1 ag1]|] bf1] [[[p2 ag2]|] bf2]; + - intros [[[dq1 ag1]|] bf1] [[[dq2 ag2]|] bf2]; try apply View_proper=> //=; by rewrite cmra_morphism_op. Qed. diff --git a/iris/base_logic/algebra.v b/iris/base_logic/algebra.v index 8d943d4ff146bd8b114b2508fe2d5444e4c76a72..a544ba591bc369ab78700c2a1c3d81b1ba17fd41 100644 --- a/iris/base_logic/algebra.v +++ b/iris/base_logic/algebra.v @@ -145,23 +145,23 @@ Section view. Implicit Types b : B. Implicit Types x y : view rel. - Lemma view_both_frac_validI_1 (relI : uPred M) q a b : + Lemma view_both_frac_validI_1 (relI : uPred M) dq a b : (∀ n (x : M), rel n a b → relI n x) → - ✓ (â—V{q} a â‹… â—¯V b : view rel) ⊢ ⌜q ≤ 1âŒ%Qp ∧ relI. + ✓ (â—V{dq} a â‹… â—¯V b : view rel) ⊢ ⌜✓dq⌠∧ relI. Proof. intros Hrel. uPred.unseal. split=> n x _ /=. rewrite /uPred_holds /= view_both_frac_validN. by move=> [? /Hrel]. Qed. - Lemma view_both_frac_validI_2 (relI : uPred M) q a b : + Lemma view_both_frac_validI_2 (relI : uPred M) dq a b : (∀ n (x : M), relI n x → rel n a b) → - ⌜q ≤ 1âŒ%Qp ∧ relI ⊢ ✓ (â—V{q} a â‹… â—¯V b : view rel). + ⌜✓dqâŒ%Qp ∧ relI ⊢ ✓ (â—V{dq} a â‹… â—¯V b : view rel). Proof. intros Hrel. uPred.unseal. split=> n x _ /=. rewrite /uPred_holds /= view_both_frac_validN. by move=> [? /Hrel]. Qed. - Lemma view_both_frac_validI (relI : uPred M) q a b : + Lemma view_both_frac_validI (relI : uPred M) dq a b : (∀ n (x : M), rel n a b ↔ relI n x) → - ✓ (â—V{q} a â‹… â—¯V b : view rel) ⊣⊢ ⌜q ≤ 1âŒ%Qp ∧ relI. + ✓ (â—V{dq} a â‹… â—¯V b : view rel) ⊣⊢ ⌜✓dq⌠∧ relI. Proof. intros. apply (anti_symm _); [apply view_both_frac_validI_1|apply view_both_frac_validI_2]; naive_solver. @@ -186,11 +186,11 @@ Section view. [apply view_both_validI_1|apply view_both_validI_2]; naive_solver. Qed. - Lemma view_auth_frac_validI (relI : uPred M) q a : + Lemma view_auth_frac_validI (relI : uPred M) dq a : (∀ n (x : M), relI n x ↔ rel n a ε) → - ✓ (â—V{q} a : view rel) ⊣⊢ ⌜q ≤ 1âŒ%Qp ∧ relI. + ✓ (â—V{dq} a : view rel) ⊣⊢ ⌜✓dq⌠∧ relI. Proof. - intros. rewrite -(right_id ε op (â—V{q} a)). by apply view_both_frac_validI. + intros. rewrite -(right_id ε op (â—V{dq} a)). by apply view_both_frac_validI. Qed. Lemma view_auth_validI (relI : uPred M) a : (∀ n (x : M), relI n x ↔ rel n a ε) → @@ -208,7 +208,7 @@ Section auth. Implicit Types a b : A. Implicit Types x y : auth A. - Lemma auth_auth_frac_validI q a : ✓ (â—{q} a) ⊣⊢ ⌜q ≤ 1âŒ%Qp ∧ ✓ a. + Lemma auth_auth_frac_validI dq a : ✓ (â—{dq} a) ⊣⊢ ⌜✓dq⌠∧ ✓ a. Proof. apply view_auth_frac_validI=> n. uPred.unseal; split; [|by intros [??]]. split; [|done]. apply ucmra_unit_leastN. @@ -224,8 +224,8 @@ Section auth. rewrite auth_view_rel_exists. by uPred.unseal. Qed. - Lemma auth_both_frac_validI q a b : - ✓ (â—{q} a â‹… â—¯ b) ⊣⊢ ⌜q ≤ 1âŒ%Qp ∧ (∃ c, a ≡ b â‹… c) ∧ ✓ a. + Lemma auth_both_frac_validI dq a b : + ✓ (â—{dq} a â‹… â—¯ b) ⊣⊢ ⌜✓dq⌠∧ (∃ c, a ≡ b â‹… c) ∧ ✓ a. Proof. apply view_both_frac_validI=> n. by uPred.unseal. Qed. Lemma auth_both_validI a b : ✓ (â— a â‹… â—¯ b) ⊣⊢ (∃ c, a ≡ b â‹… c) ∧ ✓ a. diff --git a/iris/base_logic/lib/gset_bij.v b/iris/base_logic/lib/gset_bij.v index 1144bf6f500b384428a6585a7c1fd4593c6cc0fa..63c7d346be18476521771be8e87d3d7f2a90f7ed 100644 --- a/iris/base_logic/lib/gset_bij.v +++ b/iris/base_logic/lib/gset_bij.v @@ -38,8 +38,8 @@ Global Instance subG_gset_bijΣ `{Countable A, Countable B} Σ : Proof. solve_inG. Qed. Definition gset_bij_own_auth_def `{gset_bijG Σ A B} (γ : gname) - (q : Qp) (L : gset (A * B)) : iProp Σ := - own γ (gset_bij_auth q L). + (dq : dfrac) (L : gset (A * B)) : iProp Σ := + own γ (gset_bij_auth dq L). Definition gset_bij_own_auth_aux : seal (@gset_bij_own_auth_def). Proof. by eexists. Qed. Definition gset_bij_own_auth := unseal gset_bij_own_auth_aux. Definition gset_bij_own_auth_eq : @@ -69,23 +69,23 @@ Section gset_bij. Proof. rewrite gset_bij_own_elem_eq. apply _. Qed. Global Instance gset_bij_own_auth_fractional γ L : - Fractional (λ q, gset_bij_own_auth γ q L). + Fractional (λ q, gset_bij_own_auth γ (DfracOwn q) L). Proof. intros p q. rewrite gset_bij_own_auth_eq -own_op gset_bij_auth_frac_op //. Qed. Global Instance gset_bij_own_auth_as_fractional γ q L : - AsFractional (gset_bij_own_auth γ q L) (λ q, gset_bij_own_auth γ q L) q. + AsFractional (gset_bij_own_auth γ (DfracOwn q) L) (λ q, gset_bij_own_auth γ (DfracOwn q) L) q. Proof. split; [auto|apply _]. Qed. - Lemma gset_bij_own_auth_agree γ q1 q2 L1 L2 : - gset_bij_own_auth γ q1 L1 -∗ gset_bij_own_auth γ q2 L2 -∗ - ⌜✓ (q1 + q2)%Qp ∧ L1 = L2 ∧ gset_bijective L1âŒ. + Lemma gset_bij_own_auth_agree γ dq1 dq2 L1 L2 : + gset_bij_own_auth γ dq1 L1 -∗ gset_bij_own_auth γ dq2 L2 -∗ + ⌜✓ (dq1 â‹… dq2) ∧ L1 = L2 ∧ gset_bijective L1âŒ. Proof. rewrite gset_bij_own_auth_eq. iIntros "H1 H2". by iDestruct (own_valid_2 with "H1 H2") as %?%gset_bij_auth_frac_op_valid. Qed. Lemma gset_bij_own_auth_exclusive γ L1 L2 : - gset_bij_own_auth γ 1 L1 -∗ gset_bij_own_auth γ 1 L2 -∗ False. + gset_bij_own_auth γ (DfracOwn 1) L1 -∗ gset_bij_own_auth γ (DfracOwn 1) L2 -∗ False. Proof. iIntros "H1 H2". by iDestruct (gset_bij_own_auth_agree with "H1 H2") as %[[] _]. @@ -122,24 +122,24 @@ Section gset_bij. Lemma gset_bij_own_alloc L : gset_bijective L → - ⊢ |==> ∃ γ, gset_bij_own_auth γ 1 L ∗ [∗ set] ab ∈ L, gset_bij_own_elem γ ab.1 ab.2. + ⊢ |==> ∃ γ, gset_bij_own_auth γ (DfracOwn 1) L ∗ [∗ set] ab ∈ L, gset_bij_own_elem γ ab.1 ab.2. Proof. - intro. iAssert (∃ γ, gset_bij_own_auth γ 1 L)%I with "[>]" as (γ) "Hauth". + intro. iAssert (∃ γ, gset_bij_own_auth γ (DfracOwn 1) L)%I with "[>]" as (γ) "Hauth". { rewrite gset_bij_own_auth_eq. iApply own_alloc. by apply gset_bij_auth_valid. } iExists γ. iModIntro. iSplit; [done|]. by iApply gset_bij_own_elem_get_big. Qed. Lemma gset_bij_own_alloc_empty : - ⊢ |==> ∃ γ, gset_bij_own_auth γ 1 (∅ : gset (A * B)). + ⊢ |==> ∃ γ, gset_bij_own_auth γ (DfracOwn 1) (∅ : gset (A * B)). Proof. iMod (gset_bij_own_alloc ∅) as (γ) "[Hauth _]"; by auto. Qed. Lemma gset_bij_own_extend {γ L} a b : (∀ b', (a, b') ∉ L) → (∀ a', (a', b) ∉ L) → - gset_bij_own_auth γ 1 L ==∗ - gset_bij_own_auth γ 1 ({[(a, b)]} ∪ L) ∗ gset_bij_own_elem γ a b. + gset_bij_own_auth γ (DfracOwn 1) L ==∗ + gset_bij_own_auth γ (DfracOwn 1) ({[(a, b)]} ∪ L) ∗ gset_bij_own_elem γ a b. Proof. iIntros (??) "Hauth". - iAssert (gset_bij_own_auth γ 1 ({[a, b]} ∪ L)) with "[> Hauth]" as "Hauth". + iAssert (gset_bij_own_auth γ (DfracOwn 1) ({[a, b]} ∪ L)) with "[> Hauth]" as "Hauth". { rewrite gset_bij_own_auth_eq. iApply (own_update with "Hauth"). by apply gset_bij_auth_extend. } iModIntro. iSplit; [done|]. @@ -149,8 +149,8 @@ Section gset_bij. Lemma gset_bij_own_extend_internal {γ L} a b : (∀ b', gset_bij_own_elem γ a b' -∗ False) -∗ (∀ a', gset_bij_own_elem γ a' b -∗ False) -∗ - gset_bij_own_auth γ 1 L ==∗ - gset_bij_own_auth γ 1 ({[(a, b)]} ∪ L) ∗ gset_bij_own_elem γ a b. + gset_bij_own_auth γ (DfracOwn 1) L ==∗ + gset_bij_own_auth γ (DfracOwn 1) ({[(a, b)]} ∪ L) ∗ gset_bij_own_elem γ a b. Proof. iIntros "Ha Hb HL". iAssert ⌜∀ b', (a, b') ∉ LâŒ%I as %?.