diff --git a/CHANGELOG.md b/CHANGELOG.md index e9f7cefa6d182c70d56f4dc538611b5953fd6c55..c8934aea512fb23e6baee70eb1466ab1151bb7d2 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -83,6 +83,11 @@ Coq development, but not every API-breaking change is listed. Changes marked * Make use of `ofe_iso` in the COFE solver. * The functions `{o,r,ur}Functor_diag` are no longer coercions, and renamed into `{o,r,ur}Functor_apply` to better match their intent. +* Change `inv_iff`, `cinv_iff` and `na_inv_iff` to make order of arguments + consistent and more convenient for `iApply`. They are now of the form + `inv N P -∗ â–· â–¡ (P ↔ Q) -∗ inv N Q` and (similar for `na_inv_iff` and + `cinv_iff`), following e.g., `inv_alter` and `wp_wand`. +* Add lemma `is_lock_iff` and show that `is_lock` is contractive. **Changes in heap_lang:** diff --git a/theories/base_logic/lib/cancelable_invariants.v b/theories/base_logic/lib/cancelable_invariants.v index 6eb3ef0248d1e6258dd99c4c8adac475c83b7300..234123b5737f249edd5ed8f37b9881a652932c19 100644 --- a/theories/base_logic/lib/cancelable_invariants.v +++ b/theories/base_logic/lib/cancelable_invariants.v @@ -53,11 +53,10 @@ Section proofs. iDestruct (cinv_own_valid with "H1 H2") as %[]%(exclusive_l 1%Qp). Qed. - Lemma cinv_iff N γ P P' : - â–· â–¡ (P ↔ P') -∗ cinv N γ P -∗ cinv N γ P'. + Lemma cinv_iff N γ P Q : cinv N γ P -∗ â–· â–¡ (P ↔ Q) -∗ cinv N γ Q. Proof. - iIntros "#HP". iApply inv_iff. iIntros "!> !>". - iSplit; iIntros "[?|$]"; iLeft; by iApply "HP". + iIntros "HI #HPQ". iApply (inv_iff with "HI"). iIntros "!> !>". + iSplit; iIntros "[?|$]"; iLeft; by iApply "HPQ". Qed. (*** Allocation rules. *) diff --git a/theories/base_logic/lib/invariants.v b/theories/base_logic/lib/invariants.v index c8e996fa20a3b9a7fd56d1a6ba3f0dc217010379..a1af8026d410b62d13f0ff9232f5ff606fd0f020 100644 --- a/theories/base_logic/lib/invariants.v +++ b/theories/base_logic/lib/invariants.v @@ -97,18 +97,17 @@ Section inv. Global Instance inv_persistent N P : Persistent (inv N P). Proof. rewrite inv_eq. apply _. Qed. - Lemma inv_alter N P Q: - inv N P -∗ â–· â–¡ (P -∗ Q ∗ (Q -∗ P)) -∗ inv N Q. + Lemma inv_alter N P Q : inv N P -∗ â–· â–¡ (P -∗ Q ∗ (Q -∗ P)) -∗ inv N Q. Proof. - rewrite inv_eq. iIntros "#HI #Acc !>" (E H). + rewrite inv_eq. iIntros "#HI #HPQ !>" (E H). iMod ("HI" $! E H) as "[HP Hclose]". - iDestruct ("Acc" with "HP") as "[$ HQP]". + iDestruct ("HPQ" with "HP") as "[$ HQP]". iIntros "!> HQ". iApply "Hclose". iApply "HQP". done. Qed. - Lemma inv_iff N P Q : â–· â–¡ (P ↔ Q) -∗ inv N P -∗ inv N Q. + Lemma inv_iff N P Q : inv N P -∗ â–· â–¡ (P ↔ Q) -∗ inv N Q. Proof. - iIntros "#HPQ #HI". iApply (inv_alter with "HI"). + iIntros "#HI #HPQ". iApply (inv_alter with "HI"). iIntros "!> !> HP". iSplitL "HP". - by iApply "HPQ". - iIntros "HQ". by iApply "HPQ". diff --git a/theories/base_logic/lib/na_invariants.v b/theories/base_logic/lib/na_invariants.v index 25c749dad1368289f22bdcb1c11afe8e6c3173cb..00d4452b89f0ce61aeb6ba950d4555544d19b1e9 100644 --- a/theories/base_logic/lib/na_invariants.v +++ b/theories/base_logic/lib/na_invariants.v @@ -43,10 +43,10 @@ Section proofs. Global Instance na_inv_persistent p N P : Persistent (na_inv p N P). Proof. rewrite /na_inv; apply _. Qed. - Lemma na_inv_iff p N P Q : â–· â–¡ (P ↔ Q) -∗ na_inv p N P -∗ na_inv p N Q. + Lemma na_inv_iff p N P Q : na_inv p N P -∗ â–· â–¡ (P ↔ Q) -∗ na_inv p N Q. Proof. - iIntros "#HPQ". rewrite /na_inv. iDestruct 1 as (i ?) "#Hinv". - iExists i. iSplit; first done. iApply (inv_iff with "[] Hinv"). + iIntros "HI #HPQ". rewrite /na_inv. iDestruct "HI" as (i ?) "HI". + iExists i. iSplit; first done. iApply (inv_iff with "HI"). iIntros "!> !>". iSplit; iIntros "[[? Ho]|$]"; iLeft; iFrame "Ho"; by iApply "HPQ". Qed. diff --git a/theories/heap_lang/lib/lock.v b/theories/heap_lang/lib/lock.v index 1bd35bf56ea661b99240d01eeff0dee87739a9f8..184b62fd4b524fff8033ef918d05b9b7137c4996 100644 --- a/theories/heap_lang/lib/lock.v +++ b/theories/heap_lang/lib/lock.v @@ -13,8 +13,10 @@ Structure lock Σ `{!heapG Σ} := Lock { is_lock (N: namespace) (γ: name) (lock: val) (R: iProp Σ) : iProp Σ; locked (γ: name) : iProp Σ; (* -- general properties -- *) - is_lock_ne N γ lk : NonExpansive (is_lock N γ lk); + is_lock_ne N γ lk : Contractive (is_lock N γ lk); is_lock_persistent N γ lk R : Persistent (is_lock N γ lk R); + is_lock_iff N γ lk R1 R2 : + is_lock N γ lk R1 -∗ â–· â–¡ (R1 ↔ R2) -∗ is_lock N γ lk R2; locked_timeless γ : Timeless (locked γ); locked_exclusive γ : locked γ -∗ locked γ -∗ False; (* -- operation specs -- *) diff --git a/theories/heap_lang/lib/spin_lock.v b/theories/heap_lang/lib/spin_lock.v index f0aab59b4d1bec01bcbc8cf1f3d7010dad81db56..d9be8c585c60044a9b962465a22be0df15ec8453 100644 --- a/theories/heap_lang/lib/spin_lock.v +++ b/theories/heap_lang/lib/spin_lock.v @@ -36,8 +36,8 @@ Section proof. Global Instance lock_inv_ne γ l : NonExpansive (lock_inv γ l). Proof. solve_proper. Qed. - Global Instance is_lock_ne γ l : NonExpansive (is_lock γ l). - Proof. solve_proper. Qed. + Global Instance is_lock_contractive γ l : Contractive (is_lock γ l). + Proof. solve_contractive. Qed. (** The main proofs. *) Global Instance is_lock_persistent γ l R : Persistent (is_lock γ l R). @@ -45,6 +45,16 @@ Section proof. Global Instance locked_timeless γ : Timeless (locked γ). Proof. apply _. Qed. + Lemma is_lock_iff γ lk R1 R2 : + is_lock γ lk R1 -∗ â–· â–¡ (R1 ↔ R2) -∗ is_lock γ lk R2. + Proof. + iDestruct 1 as (l ->) "#Hinv"; iIntros "#HR". + iExists l; iSplit; [done|]. iApply (inv_iff with "Hinv"). + iIntros "!> !#"; iSplit; iDestruct 1 as (b) "[Hl H]"; + iExists b; iFrame "Hl"; destruct b; + first [done|iDestruct "H" as "[$ ?]"; by iApply "HR"]. + Qed. + Lemma newlock_spec (R : iProp Σ): {{{ R }}} newlock #() {{{ lk γ, RET lk; is_lock γ lk R }}}. Proof. @@ -92,5 +102,6 @@ End proof. Typeclasses Opaque is_lock locked. Canonical Structure spin_lock `{!heapG Σ, !lockG Σ} : lock Σ := - {| lock.locked_exclusive := locked_exclusive; lock.newlock_spec := newlock_spec; + {| lock.locked_exclusive := locked_exclusive; lock.is_lock_iff := is_lock_iff; + lock.newlock_spec := newlock_spec; lock.acquire_spec := acquire_spec; lock.release_spec := release_spec |}. diff --git a/theories/heap_lang/lib/ticket_lock.v b/theories/heap_lang/lib/ticket_lock.v index 8296258b676ba98bded79e7d42069bc1bb72abac..93b60961cb81a53bdeded9d0b0f49c7a058dc1ad 100644 --- a/theories/heap_lang/lib/ticket_lock.v +++ b/theories/heap_lang/lib/ticket_lock.v @@ -54,11 +54,10 @@ Section proof. Definition locked (γ : gname) : iProp Σ := (∃ o, own γ (â—¯ (Excl' o, GSet ∅)))%I. - Global Instance lock_inv_ne γ lo ln : - NonExpansive (lock_inv γ lo ln). - Proof. solve_proper. Qed. - Global Instance is_lock_ne γ lk : NonExpansive (is_lock γ lk). + Global Instance lock_inv_ne γ lo ln : NonExpansive (lock_inv γ lo ln). Proof. solve_proper. Qed. + Global Instance is_lock_contractive γ lk : Contractive (is_lock γ lk). + Proof. solve_contractive. Qed. Global Instance is_lock_persistent γ lk R : Persistent (is_lock γ lk R). Proof. apply _. Qed. Global Instance locked_timeless γ : Timeless (locked γ). @@ -70,6 +69,16 @@ Section proof. iDestruct (own_valid_2 with "H1 H2") as %[[] _]. Qed. + Lemma is_lock_iff γ lk R1 R2 : + is_lock γ lk R1 -∗ â–· â–¡ (R1 ↔ R2) -∗ is_lock γ lk R2. + Proof. + iDestruct 1 as (lo ln ->) "#Hinv"; iIntros "#HR". + iExists lo, ln; iSplit; [done|]. iApply (inv_iff with "Hinv"). + iIntros "!> !#"; iSplit; iDestruct 1 as (o n) "(Ho & Hn & Hâ— & H)"; + iExists o, n; iFrame "Ho Hn Hâ—"; + (iDestruct "H" as "[[Hâ—¯ H]|Hâ—¯]"; [iLeft; iFrame "Hâ—¯"; by iApply "HR"|by iRight]). + Qed. + Lemma newlock_spec (R : iProp Σ) : {{{ R }}} newlock #() {{{ lk γ, RET lk; is_lock γ lk R }}}. Proof. @@ -163,5 +172,6 @@ End proof. Typeclasses Opaque is_lock issued locked. Canonical Structure ticket_lock `{!heapG Σ, !tlockG Σ} : lock Σ := - {| lock.locked_exclusive := locked_exclusive; lock.newlock_spec := newlock_spec; + {| lock.locked_exclusive := locked_exclusive; lock.is_lock_iff := is_lock_iff; + lock.newlock_spec := newlock_spec; lock.acquire_spec := acquire_spec; lock.release_spec := release_spec |}.