diff --git a/tests/proofmode.v b/tests/proofmode.v index f34c1401e3b0423f832cd7967581ea1fe7fbd140..b6a70a42100bd1234c3478b5700579e1d282863b 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -501,7 +501,7 @@ Proof. iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ". Qed. Lemma test_iAlways P Q R : â–¡ P -∗ <pers> Q → R -∗ <pers> <affine> <affine> P ∗ â–¡ Q. -Proof. iIntros "#HP #HQ HR". iSplitL. iAlways. done. iAlways. done. Qed. +Proof. iIntros "#HP #HQ HR". iSplitL. iModIntro. done. iModIntro. done. Qed. (* A bunch of test cases from #127 to establish that tactics behave the same on `⌜ φ ⌠→ P` and `∀ _ : φ, P` *) @@ -975,7 +975,7 @@ Proof. Fail iStopProof. Abort. Check "iAlways_spatial_non_empty". Lemma iAlways_spatial_non_empty P : P -∗ â–¡ emp. -Proof. iIntros "HP". Fail iAlways. Abort. +Proof. iIntros "HP". Fail iModIntro. Abort. Check "iDestruct_bad_name". Lemma iDestruct_bad_name P : diff --git a/tests/proofmode_monpred.v b/tests/proofmode_monpred.v index b39d8ab7c1a5e694a3ae23b534acc337d520ffdf..5d7b84d2a262de98eb6a89679b2a87fe643a026d 100644 --- a/tests/proofmode_monpred.v +++ b/tests/proofmode_monpred.v @@ -71,23 +71,23 @@ Section tests. Qed. Lemma test_objectively P Q : <obj> emp -∗ <obj> P -∗ <obj> Q -∗ <obj> (P ∗ Q). - Proof. iIntros "#? HP HQ". iAlways. by iSplitL "HP". Qed. + Proof. iIntros "#? HP HQ". iModIntro. by iSplitL "HP". Qed. Lemma test_objectively_absorbing P Q R `{!Absorbing P} : <obj> emp -∗ <obj> P -∗ <obj> Q -∗ R -∗ <obj> (P ∗ Q). - Proof. iIntros "#? HP HQ HR". iAlways. by iSplitL "HP". Qed. + Proof. iIntros "#? HP HQ HR". iModIntro. by iSplitL "HP". Qed. Lemma test_objectively_affine P Q R `{!Affine R} : <obj> emp -∗ <obj> P -∗ <obj> Q -∗ R -∗ <obj> (P ∗ Q). - Proof. iIntros "#? HP HQ HR". iAlways. by iSplitL "HP". Qed. + Proof. iIntros "#? HP HQ HR". iModIntro. by iSplitL "HP". Qed. Lemma test_iModIntro_embed P `{!Affine Q} ð“Ÿ ð“ : â–¡ P -∗ Q -∗ ⎡ð“ŸâŽ¤ -∗ ⎡ð“ ⎤ -∗ ⎡ 𓟠∗ ð“ ⎤. - Proof. iIntros "#H1 _ H2 H3". iAlways. iFrame. Qed. + Proof. iIntros "#H1 _ H2 H3". iModIntro. iFrame. Qed. Lemma test_iModIntro_embed_objective P `{!Objective Q} ð“Ÿ ð“ : â–¡ P -∗ Q -∗ ⎡ð“ŸâŽ¤ -∗ ⎡ð“ ⎤ -∗ ⎡ ∀ i, 𓟠∗ ð“ ∗ Q i ⎤. - Proof. iIntros "#H1 H2 H3 H4". iAlways. Show. iFrame. Qed. + Proof. iIntros "#H1 H2 H3 H4". iModIntro. Show. iFrame. Qed. Lemma test_iModIntro_embed_nested P ð“Ÿ ð“ : â–¡ P -∗ ⎡◇ ð“ŸâŽ¤ -∗ ⎡◇ ð“ ⎤ -∗ ⎡ â—‡ (𓟠∗ ð“ ) ⎤.