From iris.algebra Require Import lib.frac_auth numbers auth. From iris.proofmode Require Import proofmode. From iris.base_logic.lib Require Export invariants. From iris.program_logic Require Export weakestpre. From iris.heap_lang Require Export lang. From iris.heap_lang Require Import proofmode notation. From iris.prelude Require Import options. Definition newcounter : val := λ: <>, ref #0. Definition incr : val := rec: "incr" "l" := let: "n" := !"l" in if: CAS "l" "n" (#1 + "n") then #() else "incr" "l". Definition read : val := λ: "l", !"l". (** Monotone counter *) Class mcounterG Σ := MCounterG { mcounter_inG :> inG Σ (authR max_natUR) }. Definition mcounterΣ : gFunctors := #[GFunctor (authR max_natUR)]. Global Instance subG_mcounterΣ {Σ} : subG mcounterΣ Σ → mcounterG Σ. Proof. solve_inG. Qed. Section mono_proof. Context `{!heapGS Σ, !mcounterG Σ} (N : namespace). Definition mcounter_inv (γ : gname) (l : loc) : iProp Σ := ∃ n, own γ (● (MaxNat n)) ∗ l ↦ #n. Definition mcounter (l : loc) (n : nat) : iProp Σ := ∃ γ, inv N (mcounter_inv γ l) ∧ own γ (◯ (MaxNat n)). (** The main proofs. *) Global Instance mcounter_persistent l n : Persistent (mcounter l n). Proof. apply _. Qed. Lemma newcounter_mono_spec : {{{ True }}} newcounter #() {{{ l, RET #l; mcounter l 0 }}}. Proof. iIntros (Φ) "_ HΦ". rewrite /newcounter /=. wp_lam. wp_alloc l as "Hl". iMod (own_alloc (● (MaxNat O) ⋅ ◯ (MaxNat O))) as (γ) "[Hγ Hγ']"; first by apply auth_both_valid_discrete. iMod (inv_alloc N _ (mcounter_inv γ l) with "[Hl Hγ]"). { iNext. iExists 0. by iFrame. } iModIntro. iApply "HΦ". rewrite /mcounter; eauto 10. Qed. Lemma incr_mono_spec l n : {{{ mcounter l n }}} incr #l {{{ RET #(); mcounter l (S n) }}}. Proof. iIntros (Φ) "Hl HΦ". iLöb as "IH". wp_rec. iDestruct "Hl" as (γ) "[#? Hγf]". wp_bind (! _)%E. iInv N as (c) ">[Hγ Hl]". wp_load. iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. wp_pures. wp_bind (CmpXchg _ _ _). iInv N as (c') ">[Hγ Hl]". destruct (decide (c' = c)) as [->|]. - iDestruct (own_valid_2 with "Hγ Hγf") as %[?%max_nat_included _]%auth_both_valid_discrete. iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]". { apply auth_update, (max_nat_local_update _ _ (MaxNat (S c))). simpl. auto. } wp_cmpxchg_suc. iModIntro. iSplitL "Hl Hγ". { iNext. iExists (S c). rewrite Nat2Z.inj_succ Z.add_1_l. by iFrame. } wp_pures. iApply "HΦ". iModIntro. iExists γ; repeat iSplit; eauto. iApply (own_mono with "Hγf"). (* FIXME: FIXME(Coq #6294): needs new unification *) apply: auth_frag_mono. by apply max_nat_included, le_n_S. - wp_cmpxchg_fail; first (by intros [= ?%Nat2Z.inj]). iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c'; by iFrame|]. wp_pures. iApply ("IH" with "[Hγf] [HΦ]"); last by auto. rewrite {3}/mcounter; eauto 10. Qed. Lemma read_mono_spec l j : {{{ mcounter l j }}} read #l {{{ i, RET #i; ⌜j ≤ i⌝ ∧ mcounter l i }}}. Proof. iIntros (ϕ) "Hc HΦ". iDestruct "Hc" as (γ) "[#Hinv Hγf]". rewrite /read /=. wp_lam. iInv N as (c) ">[Hγ Hl]". wp_load. iDestruct (own_valid_2 with "Hγ Hγf") as %[?%max_nat_included _]%auth_both_valid_discrete. iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]". { apply auth_update, (max_nat_local_update _ _ (MaxNat c)); auto. } iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. iApply ("HΦ" with "[-]"). rewrite /mcounter; eauto 10. Qed. End mono_proof. (** Counter with contributions *) Class ccounterG Σ := CCounterG { ccounter_inG :> inG Σ (frac_authR natR) }. Definition ccounterΣ : gFunctors := #[GFunctor (frac_authR natR)]. Global Instance subG_ccounterΣ {Σ} : subG ccounterΣ Σ → ccounterG Σ. Proof. solve_inG. Qed. Section contrib_spec. Context `{!heapGS Σ, !ccounterG Σ} (N : namespace). Definition ccounter_inv (γ : gname) (l : loc) : iProp Σ := ∃ n, own γ (●F n) ∗ l ↦ #n. Definition ccounter_ctx (γ : gname) (l : loc) : iProp Σ := inv N (ccounter_inv γ l). Definition ccounter (γ : gname) (q : frac) (n : nat) : iProp Σ := own γ (◯F{q} n). (** The main proofs. *) Lemma ccounter_op γ q1 q2 n1 n2 : ccounter γ (q1 + q2) (n1 + n2) ⊣⊢ ccounter γ q1 n1 ∗ ccounter γ q2 n2. Proof. by rewrite /ccounter frac_auth_frag_op -own_op. Qed. Lemma newcounter_contrib_spec (R : iProp Σ) : {{{ True }}} newcounter #() {{{ γ l, RET #l; ccounter_ctx γ l ∗ ccounter γ 1 0 }}}. Proof. iIntros (Φ) "_ HΦ". rewrite /newcounter /=. wp_lam. wp_alloc l as "Hl". iMod (own_alloc (●F O ⋅ ◯F 0)) as (γ) "[Hγ Hγ']"; first by apply auth_both_valid_discrete. iMod (inv_alloc N _ (ccounter_inv γ l) with "[Hl Hγ]"). { iNext. iExists 0. by iFrame. } iModIntro. iApply "HΦ". rewrite /ccounter_ctx /ccounter; eauto 10. Qed. Lemma incr_contrib_spec γ l q n : {{{ ccounter_ctx γ l ∗ ccounter γ q n }}} incr #l {{{ RET #(); ccounter γ q (S n) }}}. Proof. iIntros (Φ) "[#? Hγf] HΦ". iLöb as "IH". wp_rec. wp_bind (! _)%E. iInv N as (c) ">[Hγ Hl]". wp_load. iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. wp_pures. wp_bind (CmpXchg _ _ _). iInv N as (c') ">[Hγ Hl]". destruct (decide (c' = c)) as [->|]. - iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]". { apply frac_auth_update, (nat_local_update _ _ (S c) (S n)); lia. } wp_cmpxchg_suc. iModIntro. iSplitL "Hl Hγ". { iNext. iExists (S c). rewrite Nat2Z.inj_succ Z.add_1_l. by iFrame. } wp_pures. by iApply "HΦ". - wp_cmpxchg_fail; first (by intros [= ?%Nat2Z.inj]). iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c'; by iFrame|]. wp_pures. by iApply ("IH" with "[Hγf] [HΦ]"); auto. Qed. Lemma read_contrib_spec γ l q n : {{{ ccounter_ctx γ l ∗ ccounter γ q n }}} read #l {{{ c, RET #c; ⌜n ≤ c⌝ ∧ ccounter γ q n }}}. Proof. iIntros (Φ) "[#? Hγf] HΦ". rewrite /read /=. wp_lam. iInv N as (c) ">[Hγ Hl]". wp_load. iDestruct (own_valid_2 with "Hγ Hγf") as % ?%frac_auth_included_total%nat_included. iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. iApply ("HΦ" with "[-]"); rewrite /ccounter; eauto 10. Qed. Lemma read_contrib_spec_1 γ l n : {{{ ccounter_ctx γ l ∗ ccounter γ 1 n }}} read #l {{{ RET #n; ccounter γ 1 n }}}. Proof. iIntros (Φ) "[#? Hγf] HΦ". rewrite /read /=. wp_lam. iInv N as (c) ">[Hγ Hl]". wp_load. iDestruct (own_valid_2 with "Hγ Hγf") as % <-%frac_auth_agree_L. iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|]. by iApply "HΦ". Qed. End contrib_spec.