From iris.proofmode Require Import coq_tactics reduction. From iris.proofmode Require Export tactics. From iris.program_logic Require Export weakestpre total_weakestpre. From iris.program_logic Require Import atomic. From iris.heap_lang Require Export tactics lifting array. From iris.heap_lang Require Import notation. Set Default Proof Using "Type". Import uPred. Lemma tac_wp_expr_eval `{!heapG Σ} Δ s E Φ e e' : (∀ (e'':=e'), e = e'') → envs_entails Δ (WP e' @ s; E {{ Φ }}) → envs_entails Δ (WP e @ s; E {{ Φ }}). Proof. by intros ->. Qed. Lemma tac_twp_expr_eval `{!heapG Σ} Δ s E Φ e e' : (∀ (e'':=e'), e = e'') → envs_entails Δ (WP e' @ s; E [{ Φ }]) → envs_entails Δ (WP e @ s; E [{ Φ }]). Proof. by intros ->. Qed. Tactic Notation "wp_expr_eval" tactic(t) := iStartProof; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => eapply tac_wp_expr_eval; [let x := fresh in intros x; t; unfold x; reflexivity|] | |- envs_entails _ (twp ?s ?E ?e ?Q) => eapply tac_twp_expr_eval; [let x := fresh in intros x; t; unfold x; reflexivity|] | _ => fail "wp_expr_eval: not a 'wp'" end. Lemma tac_wp_pure `{!heapG Σ} Δ Δ' s E e1 e2 φ n Φ : PureExec φ n e1 e2 → φ → MaybeIntoLaterNEnvs n Δ Δ' → envs_entails Δ' (WP e2 @ s; E {{ Φ }}) → envs_entails Δ (WP e1 @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ??? HΔ'. rewrite into_laterN_env_sound /=. rewrite HΔ' -lifting.wp_pure_step_later //. Qed. Lemma tac_twp_pure `{!heapG Σ} Δ s E e1 e2 φ n Φ : PureExec φ n e1 e2 → φ → envs_entails Δ (WP e2 @ s; E [{ Φ }]) → envs_entails Δ (WP e1 @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=> ?? ->. rewrite -total_lifting.twp_pure_step //. Qed. Lemma tac_wp_value `{!heapG Σ} Δ s E Φ v : envs_entails Δ (Φ v) → envs_entails Δ (WP (Val v) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ->. by apply wp_value. Qed. Lemma tac_twp_value `{!heapG Σ} Δ s E Φ v : envs_entails Δ (Φ v) → envs_entails Δ (WP (Val v) @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=> ->. by apply twp_value. Qed. Ltac wp_expr_simpl := wp_expr_eval simpl. Ltac wp_value_head := first [eapply tac_wp_value || eapply tac_twp_value]. Ltac wp_finish := wp_expr_simpl; (* simplify occurences of subst/fill *) try wp_value_head; (* in case we have reached a value, get rid of the WP *) pm_prettify. (* prettify ▷s caused by [MaybeIntoLaterNEnvs] and λs caused by wp_value *) Ltac solve_vals_compare_safe := (* The first branch is for when we have [vals_compare_safe] in the context. The other two branches are for when either one of the branches reduces to [True] or we have it in the context. *) fast_done || (left; fast_done) || (right; fast_done). (** The argument [efoc] can be used to specify the construct that should be reduced. For example, you can write [wp_pure (EIf _ _ _)], which will search for an [EIf _ _ _] in the expression, and reduce it. The use of [open_constr] in this tactic is essential. It will convert all holes (i.e. [_]s) into evars, that later get unified when an occurences is found (see [unify e' efoc] in the code below). *) Tactic Notation "wp_pure" open_constr(efoc) := iStartProof; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => let e := eval simpl in e in reshape_expr e ltac:(fun K e' => unify e' efoc; eapply (tac_wp_pure _ _ _ _ (fill K e')); [iSolveTC (* PureExec *) |try solve_vals_compare_safe (* The pure condition for PureExec -- handles trivial goals, including [vals_compare_safe] *) |iSolveTC (* IntoLaters *) |wp_finish (* new goal *) ]) || fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex" | |- envs_entails _ (twp ?s ?E ?e ?Q) => let e := eval simpl in e in reshape_expr e ltac:(fun K e' => unify e' efoc; eapply (tac_twp_pure _ _ _ (fill K e')); [iSolveTC (* PureExec *) |try fast_done (* The pure condition for PureExec *) |wp_finish (* new goal *) ]) || fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex" | _ => fail "wp_pure: not a 'wp'" end. (* TODO: do this in one go, without [repeat]. *) Ltac wp_pures := iStartProof; repeat (wp_pure _; []). (* The `;[]` makes sure that no side-condition magically spawns. *) (** Unlike [wp_pures], the tactics [wp_rec] and [wp_lam] should also reduce lambdas/recs that are hidden behind a definition, i.e. they should use [AsRecV_recv] as a proper instance instead of a [Hint Extern]. We achieve this by putting [AsRecV_recv] in the current environment so that it can be used as an instance by the typeclass resolution system. We then perform the reduction, and finally we clear this new hypothesis. *) Tactic Notation "wp_rec" := let H := fresh in assert (H := AsRecV_recv); wp_pure (App _ _); clear H. Tactic Notation "wp_if" := wp_pure (If _ _ _). Tactic Notation "wp_if_true" := wp_pure (If (LitV (LitBool true)) _ _). Tactic Notation "wp_if_false" := wp_pure (If (LitV (LitBool false)) _ _). Tactic Notation "wp_unop" := wp_pure (UnOp _ _). Tactic Notation "wp_binop" := wp_pure (BinOp _ _ _). Tactic Notation "wp_op" := wp_unop || wp_binop. Tactic Notation "wp_lam" := wp_rec. Tactic Notation "wp_let" := wp_pure (Rec BAnon (BNamed _) _); wp_lam. Tactic Notation "wp_seq" := wp_pure (Rec BAnon BAnon _); wp_lam. Tactic Notation "wp_proj" := wp_pure (Fst _) || wp_pure (Snd _). Tactic Notation "wp_case" := wp_pure (Case _ _ _). Tactic Notation "wp_match" := wp_case; wp_pure (Rec _ _ _); wp_lam. Tactic Notation "wp_inj" := wp_pure (InjL _) || wp_pure (InjR _). Tactic Notation "wp_pair" := wp_pure (Pair _ _). Tactic Notation "wp_closure" := wp_pure (Rec _ _ _). Lemma tac_wp_bind `{!heapG Σ} K Δ s E Φ e f : f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *) envs_entails Δ (WP e @ s; E {{ v, WP f (Val v) @ s; E {{ Φ }} }})%I → envs_entails Δ (WP fill K e @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> -> ->. by apply: wp_bind. Qed. Lemma tac_twp_bind `{!heapG Σ} K Δ s E Φ e f : f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *) envs_entails Δ (WP e @ s; E [{ v, WP f (Val v) @ s; E [{ Φ }] }])%I → envs_entails Δ (WP fill K e @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=> -> ->. by apply: twp_bind. Qed. Ltac wp_bind_core K := lazymatch eval hnf in K with | [] => idtac | _ => eapply (tac_wp_bind K); [simpl; reflexivity|reduction.pm_prettify] end. Ltac twp_bind_core K := lazymatch eval hnf in K with | [] => idtac | _ => eapply (tac_twp_bind K); [simpl; reflexivity|reduction.pm_prettify] end. Tactic Notation "wp_bind" open_constr(efoc) := iStartProof; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core K) || fail "wp_bind: cannot find" efoc "in" e | |- envs_entails _ (twp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => unify e' efoc; twp_bind_core K) || fail "wp_bind: cannot find" efoc "in" e | _ => fail "wp_bind: not a 'wp'" end. (** Heap tactics *) Section heap. Context `{!heapG Σ}. Implicit Types P Q : iProp Σ. Implicit Types Φ : val → iProp Σ. Implicit Types Δ : envs (uPredI (iResUR Σ)). Implicit Types v : val. Implicit Types z : Z. Lemma tac_wp_allocN Δ Δ' s E j K v n Φ : 0 < n → MaybeIntoLaterNEnvs 1 Δ Δ' → (∀ l, ∃ Δ'', envs_app false (Esnoc Enil j (array l (replicate (Z.to_nat n) v))) Δ' = Some Δ'' ∧ envs_entails Δ'' (WP fill K (Val $ LitV $ LitLoc l) @ s; E {{ Φ }})) → envs_entails Δ (WP fill K (AllocN (Val $ LitV $ LitInt n) (Val v)) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ? ? HΔ. rewrite -wp_bind. eapply wand_apply; first exact: wp_allocN. rewrite left_id into_laterN_env_sound; apply later_mono, forall_intro=> l. destruct (HΔ l) as (Δ''&?&HΔ'). rewrite envs_app_sound //; simpl. apply wand_intro_l. by rewrite (sep_elim_l (l ↦∗ _)%I) right_id wand_elim_r. Qed. Lemma tac_twp_allocN Δ s E j K v n Φ : 0 < n → (∀ l, ∃ Δ', envs_app false (Esnoc Enil j (array l (replicate (Z.to_nat n) v))) Δ = Some Δ' ∧ envs_entails Δ' (WP fill K (Val $ LitV $ LitLoc l) @ s; E [{ Φ }])) → envs_entails Δ (WP fill K (AllocN (Val $ LitV $ LitInt n) (Val v)) @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=> ? HΔ. rewrite -twp_bind. eapply wand_apply; first exact: twp_allocN. rewrite left_id. apply forall_intro=> l. destruct (HΔ l) as (Δ'&?&HΔ'). rewrite envs_app_sound //; simpl. apply wand_intro_l. by rewrite (sep_elim_l (l ↦∗ _)%I) right_id wand_elim_r. Qed. Lemma tac_wp_alloc Δ Δ' s E j K v Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → (∀ l, ∃ Δ'', envs_app false (Esnoc Enil j (l ↦ v)) Δ' = Some Δ'' ∧ envs_entails Δ'' (WP fill K (Val $ LitV l) @ s; E {{ Φ }})) → envs_entails Δ (WP fill K (Alloc (Val v)) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ? HΔ. rewrite -wp_bind. eapply wand_apply; first exact: wp_alloc. rewrite left_id into_laterN_env_sound; apply later_mono, forall_intro=> l. destruct (HΔ l) as (Δ''&?&HΔ'). rewrite envs_app_sound //; simpl. apply wand_intro_l. by rewrite (sep_elim_l (l ↦ v)%I) right_id wand_elim_r. Qed. Lemma tac_twp_alloc Δ s E j K v Φ : (∀ l, ∃ Δ', envs_app false (Esnoc Enil j (l ↦ v)) Δ = Some Δ' ∧ envs_entails Δ' (WP fill K (Val $ LitV $ LitLoc l) @ s; E [{ Φ }])) → envs_entails Δ (WP fill K (Alloc (Val v)) @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=> HΔ. rewrite -twp_bind. eapply wand_apply; first exact: twp_alloc. rewrite left_id. apply forall_intro=> l. destruct (HΔ l) as (Δ'&?&HΔ'). rewrite envs_app_sound //; simpl. apply wand_intro_l. by rewrite (sep_elim_l (l ↦ v)%I) right_id wand_elim_r. Qed. Lemma tac_wp_load Δ Δ' s E i K l q v Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦{q} v)%I → envs_entails Δ' (WP fill K (Val v) @ s; E {{ Φ }}) → envs_entails Δ (WP fill K (Load (LitV l)) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ???. rewrite -wp_bind. eapply wand_apply; first exact: wp_load. rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl. by apply later_mono, sep_mono_r, wand_mono. Qed. Lemma tac_twp_load Δ s E i K l q v Φ : envs_lookup i Δ = Some (false, l ↦{q} v)%I → envs_entails Δ (WP fill K (Val v) @ s; E [{ Φ }]) → envs_entails Δ (WP fill K (Load (LitV l)) @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=> ??. rewrite -twp_bind. eapply wand_apply; first exact: twp_load. rewrite envs_lookup_split //; simpl. by apply sep_mono_r, wand_mono. Qed. Lemma tac_wp_store Δ Δ' Δ'' s E i K l v v' Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦ v)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' = Some Δ'' → envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E {{ Φ }}) → envs_entails Δ (WP fill K (Store (LitV l) (Val v')) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ????. rewrite -wp_bind. eapply wand_apply; first by eapply wp_store. rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl. rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. Qed. Lemma tac_twp_store Δ Δ' s E i K l v v' Φ : envs_lookup i Δ = Some (false, l ↦ v)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ = Some Δ' → envs_entails Δ' (WP fill K (Val $ LitV LitUnit) @ s; E [{ Φ }]) → envs_entails Δ (WP fill K (Store (LitV l) v') @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq. intros. rewrite -twp_bind. eapply wand_apply; first by eapply twp_store. rewrite envs_simple_replace_sound //; simpl. rewrite right_id. by apply sep_mono_r, wand_mono. Qed. Lemma tac_wp_cmpxchg Δ Δ' Δ'' s E i K l v v1 v2 Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦ v)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' = Some Δ'' → vals_compare_safe v v1 → (v = v1 → envs_entails Δ'' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E {{ Φ }})) → (v ≠ v1 → envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E {{ Φ }})) → envs_entails Δ (WP fill K (CmpXchg (LitV l) (Val v1) (Val v2)) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ???? Hsuc Hfail. destruct (decide (v = v1)) as [Heq|Hne]. - rewrite -wp_bind. eapply wand_apply. { eapply wp_cmpxchg_suc; eauto. } rewrite into_laterN_env_sound -later_sep /= {1}envs_simple_replace_sound //; simpl. apply later_mono, sep_mono_r. rewrite right_id. apply wand_mono; auto. - rewrite -wp_bind. eapply wand_apply. { eapply wp_cmpxchg_fail; eauto. } rewrite into_laterN_env_sound -later_sep /= {1}envs_lookup_split //; simpl. apply later_mono, sep_mono_r. apply wand_mono; auto. Qed. Lemma tac_twp_cmpxchg Δ Δ' s E i K l v v1 v2 Φ : envs_lookup i Δ = Some (false, l ↦ v)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ = Some Δ' → vals_compare_safe v v1 → (v = v1 → envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E [{ Φ }])) → (v ≠ v1 → envs_entails Δ (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E [{ Φ }])) → envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=> ??? Hsuc Hfail. destruct (decide (v = v1)) as [Heq|Hne]. - rewrite -twp_bind. eapply wand_apply. { eapply twp_cmpxchg_suc; eauto. } rewrite /= {1}envs_simple_replace_sound //; simpl. apply sep_mono_r. rewrite right_id. apply wand_mono; auto. - rewrite -twp_bind. eapply wand_apply. { eapply twp_cmpxchg_fail; eauto. } rewrite /= {1}envs_lookup_split //; simpl. apply sep_mono_r. apply wand_mono; auto. Qed. Lemma tac_wp_cmpxchg_fail Δ Δ' s E i K l q v v1 v2 Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦{q} v)%I → v ≠ v1 → vals_compare_safe v v1 → envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E {{ Φ }}) → envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ?????. rewrite -wp_bind. eapply wand_apply; first exact: wp_cmpxchg_fail. rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl. by apply later_mono, sep_mono_r, wand_mono. Qed. Lemma tac_twp_cmpxchg_fail Δ s E i K l q v v1 v2 Φ : envs_lookup i Δ = Some (false, l ↦{q} v)%I → v ≠ v1 → vals_compare_safe v v1 → envs_entails Δ (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E [{ Φ }]) → envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq. intros. rewrite -twp_bind. eapply wand_apply; first exact: twp_cmpxchg_fail. rewrite envs_lookup_split //=. by do 2 f_equiv. Qed. Lemma tac_wp_cmpxchg_suc Δ Δ' Δ'' s E i K l v v1 v2 Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦ v)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' = Some Δ'' → v = v1 → vals_compare_safe v v1 → envs_entails Δ'' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E {{ Φ }}) → envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ??????; subst. rewrite -wp_bind. eapply wand_apply. { eapply wp_cmpxchg_suc; eauto. } rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl. rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. Qed. Lemma tac_twp_cmpxchg_suc Δ Δ' s E i K l v v1 v2 Φ : envs_lookup i Δ = Some (false, l ↦ v)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ = Some Δ' → v = v1 → vals_compare_safe v v1 → envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E [{ Φ }]) → envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=>?????; subst. rewrite -twp_bind. eapply wand_apply. { eapply twp_cmpxchg_suc; eauto. } rewrite envs_simple_replace_sound //; simpl. rewrite right_id. by apply sep_mono_r, wand_mono. Qed. Lemma tac_wp_faa Δ Δ' Δ'' s E i K l z1 z2 Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦ LitV z1)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ LitV (z1 + z2))) Δ' = Some Δ'' → envs_entails Δ'' (WP fill K (Val $ LitV z1) @ s; E {{ Φ }}) → envs_entails Δ (WP fill K (FAA (LitV l) (LitV z2)) @ s; E {{ Φ }}). Proof. rewrite envs_entails_eq=> ????. rewrite -wp_bind. eapply wand_apply; first exact: (wp_faa _ _ _ z1 z2). rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl. rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. Qed. Lemma tac_twp_faa Δ Δ' s E i K l z1 z2 Φ : envs_lookup i Δ = Some (false, l ↦ LitV z1)%I → envs_simple_replace i false (Esnoc Enil i (l ↦ LitV (z1 + z2))) Δ = Some Δ' → envs_entails Δ' (WP fill K (Val $ LitV z1) @ s; E [{ Φ }]) → envs_entails Δ (WP fill K (FAA (LitV l) (LitV z2)) @ s; E [{ Φ }]). Proof. rewrite envs_entails_eq=> ???. rewrite -twp_bind. eapply wand_apply; first exact: (twp_faa _ _ _ z1 z2). rewrite envs_simple_replace_sound //; simpl. rewrite right_id. by apply sep_mono_r, wand_mono. Qed. End heap. (** Evaluate [lem] to a hypothesis [H] that can be applied, and then run [wp_bind K; tac H] for every possible evaluation context. [tac] can do [iApplyHyp H] to actually apply the hypothesis. TC resolution of [lem] premises happens *after* [tac H] got executed. *) Tactic Notation "wp_apply_core" open_constr(lem) tactic(tac) := wp_pures; iPoseProofCore lem as false (fun H => lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => wp_bind_core K; tac H) || lazymatch iTypeOf H with | Some (_,?P) => fail "wp_apply: cannot apply" P end | |- envs_entails _ (twp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => twp_bind_core K; tac H) || lazymatch iTypeOf H with | Some (_,?P) => fail "wp_apply: cannot apply" P end | _ => fail "wp_apply: not a 'wp'" end). Tactic Notation "wp_apply" open_constr(lem) := wp_apply_core lem (fun H => iApplyHyp H; try iNext; try wp_expr_simpl). (** Tactic tailored for atomic triples: the first, simple one just runs [iAuIntro] on the goal, as atomic triples always have an atomic update as their premise. The second one additionaly does some framing: it gets rid of [Hs] from the context, which is intended to be the non-laterable assertions that iAuIntro would choke on. You get them all back in the continuation of the atomic operation. *) Tactic Notation "awp_apply" open_constr(lem) := wp_apply_core lem (fun H => iApplyHyp H; last iAuIntro). Tactic Notation "awp_apply" open_constr(lem) "without" constr(Hs) := wp_apply_core lem (fun H => iApply wp_frame_wand_l; iSplitL Hs; [iAccu|iApplyHyp H; last iAuIntro]). Tactic Notation "wp_alloc" ident(l) "as" constr(H) := let Htmp := iFresh in let finish _ := first [intros l | fail 1 "wp_alloc:" l "not fresh"]; eexists; split; [pm_reflexivity || fail "wp_alloc:" H "not fresh" |iDestructHyp Htmp as H; wp_finish] in wp_pures; (** The code first tries to use allocation lemma for a single reference, ie, [tac_wp_alloc] (respectively, [tac_twp_alloc]). If that fails, it tries to use the lemma [tac_wp_allocN] (respectively, [tac_twp_allocN]) for allocating an array. Notice that we could have used the array allocation lemma also for single references. However, that would produce the resource l ↦∗ [v] instead of l ↦ v for single references. These are logically equivalent assertions but are not equal. *) lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => let process_single _ := first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_alloc _ _ _ _ Htmp K)) |fail 1 "wp_alloc: cannot find 'Alloc' in" e]; [iSolveTC |finish ()] in let process_array _ := first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_allocN _ _ _ _ Htmp K)) |fail 1 "wp_alloc: cannot find 'Alloc' in" e]; [idtac|iSolveTC |finish ()] in (process_single ()) || (process_array ()) | |- envs_entails _ (twp ?s ?E ?e ?Q) => let process_single _ := first [reshape_expr e ltac:(fun K e' => eapply (tac_twp_alloc _ _ _ Htmp K)) |fail 1 "wp_alloc: cannot find 'Alloc' in" e]; finish () in let process_array _ := first [reshape_expr e ltac:(fun K e' => eapply (tac_twp_allocN _ _ _ Htmp K)) |fail 1 "wp_alloc: cannot find 'Alloc' in" e]; finish () in (process_single ()) || (process_array ()) | _ => fail "wp_alloc: not a 'wp'" end. Tactic Notation "wp_alloc" ident(l) := wp_alloc l as "?". Tactic Notation "wp_load" := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_load: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_load _ _ _ _ _ K)) |fail 1 "wp_load: cannot find 'Load' in" e]; [iSolveTC |solve_mapsto () |wp_finish] | |- envs_entails _ (twp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_twp_load _ _ _ _ K)) |fail 1 "wp_load: cannot find 'Load' in" e]; [solve_mapsto () |wp_finish] | _ => fail "wp_load: not a 'wp'" end. Tactic Notation "wp_store" := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_store: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_store _ _ _ _ _ _ K)) |fail 1 "wp_store: cannot find 'Store' in" e]; [iSolveTC |solve_mapsto () |pm_reflexivity |first [wp_seq|wp_finish]] | |- envs_entails _ (twp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_twp_store _ _ _ _ _ K)) |fail 1 "wp_store: cannot find 'Store' in" e]; [solve_mapsto () |pm_reflexivity |first [wp_seq|wp_finish]] | _ => fail "wp_store: not a 'wp'" end. Tactic Notation "wp_cmpxchg" "as" simple_intropattern(H1) "|" simple_intropattern(H2) := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_cmpxchg: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg _ _ _ _ _ _ K)) |fail 1 "wp_cmpxchg: cannot find 'CmpXchg' in" e]; [iSolveTC |solve_mapsto () |pm_reflexivity |try solve_vals_compare_safe |intros H1; wp_finish |intros H2; wp_finish] | |- envs_entails _ (twp ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg _ _ _ _ _ K)) |fail 1 "wp_cmpxchg: cannot find 'CmpXchg' in" e]; [solve_mapsto () |pm_reflexivity |try solve_vals_compare_safe |intros H1; wp_finish |intros H2; wp_finish] | _ => fail "wp_cmpxchg: not a 'wp'" end. Tactic Notation "wp_cmpxchg_fail" := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_cmpxchg_fail: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg_fail _ _ _ _ _ K)) |fail 1 "wp_cmpxchg_fail: cannot find 'CmpXchg' in" e]; [iSolveTC |solve_mapsto () |try (simpl; congruence) (* value inequality *) |try solve_vals_compare_safe |wp_finish] | |- envs_entails _ (twp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg_fail _ _ _ _ K)) |fail 1 "wp_cmpxchg_fail: cannot find 'CmpXchg' in" e]; [solve_mapsto () |try (simpl; congruence) (* value inequality *) |try solve_vals_compare_safe |wp_finish] | _ => fail "wp_cmpxchg_fail: not a 'wp'" end. Tactic Notation "wp_cmpxchg_suc" := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_cmpxchg_suc: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg_suc _ _ _ _ _ _ K)) |fail 1 "wp_cmpxchg_suc: cannot find 'CmpXchg' in" e]; [iSolveTC |solve_mapsto () |pm_reflexivity |try (simpl; congruence) (* value equality *) |try solve_vals_compare_safe |wp_finish] | |- envs_entails _ (twp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg_suc _ _ _ _ _ K)) |fail 1 "wp_cmpxchg_suc: cannot find 'CmpXchg' in" e]; [solve_mapsto () |pm_reflexivity |try (simpl; congruence) (* value equality *) |try solve_vals_compare_safe |wp_finish] | _ => fail "wp_cmpxchg_suc: not a 'wp'" end. Tactic Notation "wp_faa" := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_faa: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_faa _ _ _ _ _ _ K)) |fail 1 "wp_faa: cannot find 'FAA' in" e]; [iSolveTC |solve_mapsto () |pm_reflexivity |wp_finish] | |- envs_entails _ (twp ?s ?E ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_twp_faa _ _ _ _ _ K)) |fail 1 "wp_faa: cannot find 'FAA' in" e]; [solve_mapsto () |pm_reflexivity |wp_finish] | _ => fail "wp_faa: not a 'wp'" end.