From stdpp Require Import gmap. From iris.bi Require Export bi. From iris Require Import options. Import bi. Module bi_reflection. Section bi_reflection. Context {PROP : bi}. Inductive expr := | EEmp : expr | EVar : nat → expr | ESep : expr → expr → expr. Fixpoint eval (Σ : list PROP) (e : expr) : PROP := match e with | EEmp => emp | EVar n => default emp (Σ !! n) | ESep e1 e2 => eval Σ e1 ∗ eval Σ e2 end%I. Fixpoint flatten (e : expr) : list nat := match e with | EEmp => [] | EVar n => [n] | ESep e1 e2 => flatten e1 ++ flatten e2 end. Notation eval_list Σ l := ([∗ list] n ∈ l, default emp (Σ !! n))%I. Lemma eval_flatten Σ e : eval Σ e ⊣⊢ eval_list Σ (flatten e). Proof. induction e as [| |e1 IH1 e2 IH2]; rewrite /= ?right_id ?big_opL_app ?IH1 ?IH2 //. Qed. (* Can be related to the RHS being affine *) Lemma flatten_entails `{BiAffine PROP} Σ e1 e2 : flatten e2 ⊆+ flatten e1 → eval Σ e1 ⊢ eval Σ e2. Proof. intros. rewrite !eval_flatten. by apply big_sepL_submseteq. Qed. Lemma flatten_equiv Σ e1 e2 : flatten e2 ≡ₚ flatten e1 → eval Σ e1 ⊣⊢ eval Σ e2. Proof. intros He. by rewrite !eval_flatten He. Qed. Fixpoint prune (e : expr) : expr := match e with | EEmp => EEmp | EVar n => EVar n | ESep e1 e2 => match prune e1, prune e2 with | EEmp, e2' => e2' | e1', EEmp => e1' | e1', e2' => ESep e1' e2' end end. Lemma flatten_prune e : flatten (prune e) = flatten e. Proof. induction e as [| |e1 IH1 e2 IH2]; simplify_eq/=; auto. rewrite -IH1 -IH2. by repeat case_match; rewrite ?right_id_L. Qed. Lemma prune_correct Σ e : eval Σ (prune e) ⊣⊢ eval Σ e. Proof. by rewrite !eval_flatten flatten_prune. Qed. Fixpoint cancel_go (n : nat) (e : expr) : option expr := match e with | EEmp => None | EVar n' => if decide (n = n') then Some EEmp else None | ESep e1 e2 => match cancel_go n e1 with | Some e1' => Some (ESep e1' e2) | None => ESep e1 <$> cancel_go n e2 end end. Definition cancel (ns : list nat) (e: expr) : option expr := prune <$> fold_right (mbind ∘ cancel_go) (Some e) ns. Lemma flatten_cancel_go e e' n : cancel_go n e = Some e' → flatten e ≡ₚ n :: flatten e'. Proof. revert e'; induction e as [| |e1 IH1 e2 IH2]; intros; repeat (simplify_option_eq || case_match); auto. - by rewrite IH1 //. - by rewrite IH2 // Permutation_middle. Qed. Lemma flatten_cancel e e' ns : cancel ns e = Some e' → flatten e ≡ₚ ns ++ flatten e'. Proof. rewrite /cancel fmap_Some=> -[{e'}-e' [He ->]]; rewrite flatten_prune. revert e' He; induction ns as [|n ns IH]=> e' He; simplify_option_eq; auto. rewrite Permutation_middle -flatten_cancel_go //; eauto. Qed. Lemma cancel_entails Σ e1 e2 e1' e2' ns : cancel ns e1 = Some e1' → cancel ns e2 = Some e2' → (eval Σ e1' ⊢ eval Σ e2') → eval Σ e1 ⊢ eval Σ e2. Proof. intros ??. rewrite !eval_flatten. rewrite (flatten_cancel e1 e1' ns) // (flatten_cancel e2 e2' ns) //; csimpl. rewrite !big_opL_app. apply sep_mono_r. Qed. Fixpoint to_expr (l : list nat) : expr := match l with | [] => EEmp | [n] => EVar n | n :: l => ESep (EVar n) (to_expr l) end. Arguments to_expr !_ / : simpl nomatch. Lemma eval_to_expr Σ l : eval Σ (to_expr l) ⊣⊢ eval_list Σ l. Proof. induction l as [|n1 [|n2 l] IH]; csimpl; rewrite ?right_id //. by rewrite IH. Qed. Lemma split_l Σ e ns e' : cancel ns e = Some e' → eval Σ e ⊣⊢ (eval Σ (to_expr ns) ∗ eval Σ e'). Proof. intros He%flatten_cancel. by rewrite eval_flatten He big_opL_app eval_to_expr eval_flatten. Qed. Lemma split_r Σ e ns e' : cancel ns e = Some e' → eval Σ e ⊣⊢ (eval Σ e' ∗ eval Σ (to_expr ns)). Proof. intros. rewrite /= comm. by apply split_l. Qed. Class Quote (Σ1 Σ2 : list PROP) (P : PROP) (e : expr) := {}. Global Instance quote_True Σ : Quote Σ Σ emp%I EEmp := {}. Global Instance quote_var Σ1 Σ2 P i: rlist.QuoteLookup Σ1 Σ2 P i → Quote Σ1 Σ2 P (EVar i) | 1000 := {}. Global Instance quote_sep Σ1 Σ2 Σ3 P1 P2 e1 e2 : Quote Σ1 Σ2 P1 e1 → Quote Σ2 Σ3 P2 e2 → Quote Σ1 Σ3 (P1 ∗ P2)%I (ESep e1 e2) := {}. Class QuoteArgs (Σ : list PROP) (Ps : list PROP) (ns : list nat) := {}. Global Instance quote_args_nil Σ : QuoteArgs Σ nil nil := {}. Global Instance quote_args_cons Σ Ps P ns n : rlist.QuoteLookup Σ Σ P n → QuoteArgs Σ Ps ns → QuoteArgs Σ (P :: Ps) (n :: ns) := {}. End bi_reflection. Ltac quote := match goal with | |- ?P1 ⊢ ?P2 => lazymatch type of (_ : Quote [] _ P1 _) with Quote _ ?Σ2 _ ?e1 => lazymatch type of (_ : Quote Σ2 _ P2 _) with Quote _ ?Σ3 _ ?e2 => change (eval Σ3 e1 ⊢ eval Σ3 e2) end end end. Ltac quote_l := match goal with | |- ?P1 ⊢ ?P2 => lazymatch type of (_ : Quote [] _ P1 _) with Quote _ ?Σ2 _ ?e1 => change (eval Σ2 e1 ⊢ P2) end end. End bi_reflection. Tactic Notation "solve_sep_entails" := bi_reflection.quote; first [apply bi_reflection.flatten_entails (* for affine BIs *) |apply equiv_entails, bi_reflection.flatten_equiv (* for other BIs *) ]; apply (bool_decide_unpack _); vm_compute; exact Logic.I. Tactic Notation "solve_sep_equiv" := bi_reflection.quote; apply bi_reflection.flatten_equiv; apply (bool_decide_unpack _); vm_compute; exact Logic.I. Ltac close_uPreds Ps tac := let PROP := match goal with |- @bi_entails ?PROP _ _ => PROP end in let rec go Ps Qs := lazymatch Ps with | [] => let Qs' := eval cbv [reverse rev_append] in (reverse Qs) in tac Qs' | ?P :: ?Ps => find_pat P ltac:(fun Q => go Ps (Q :: Qs)) end in (* avoid evars in case Ps = @nil ?A *) try match Ps with [] => unify Ps (@nil PROP) end; go Ps (@nil PROP). Tactic Notation "cancel" constr(Ps) := bi_reflection.quote; let Σ := match goal with |- bi_reflection.eval ?Σ _ ⊢ _ => Σ end in let ns' := lazymatch type of (_ : bi_reflection.QuoteArgs Σ Ps _) with | bi_reflection.QuoteArgs _ _ ?ns' => ns' end in eapply bi_reflection.cancel_entails with (ns:=ns'); [cbv; reflexivity|cbv; reflexivity|simpl]. Tactic Notation "ecancel" open_constr(Ps) := close_uPreds Ps ltac:(fun Qs => cancel Qs). (** [to_front [P1, P2, ..]] rewrites in the premise of ⊢ such that the assumptions P1, P2, ... appear at the front, in that order. *) Tactic Notation "to_front" open_constr(Ps) := close_uPreds Ps ltac:(fun Ps => bi_reflection.quote_l; let Σ := match goal with |- bi_reflection.eval ?Σ _ ⊢ _ => Σ end in let ns' := lazymatch type of (_ : bi_reflection.QuoteArgs Σ Ps _) with | bi_reflection.QuoteArgs _ _ ?ns' => ns' end in eapply entails_equiv_l; first (apply bi_reflection.split_l with (ns:=ns'); cbv; reflexivity); simpl). Tactic Notation "to_back" open_constr(Ps) := close_uPreds Ps ltac:(fun Ps => bi_reflection.quote_l; let Σ := match goal with |- bi_reflection.eval ?Σ _ ⊢ _ => Σ end in let ns' := lazymatch type of (_ : bi_reflection.QuoteArgs Σ Ps _) with | bi_reflection.QuoteArgs _ _ ?ns' => ns' end in eapply entails_equiv_l; first (apply bi_reflection.split_r with (ns:=ns'); cbv; reflexivity); simpl). (** [sep_split] is used to introduce a (∗). Use [sep_split left: [P1, P2, ...]] to define which assertions will be taken to the left; the rest will be available on the right. [sep_split right: [P1, P2, ...]] works the other way around. *) Tactic Notation "sep_split" "right:" open_constr(Ps) := to_back Ps; apply sep_mono. Tactic Notation "sep_split" "left:" open_constr(Ps) := to_front Ps; apply sep_mono.