From fc6fdaa180c559082eb71060974ab3505c631919 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Sun, 4 Oct 2020 11:38:01 +0200 Subject: [PATCH] Put isomorphism `iProp` to `iPreProp` into `own` construction. --- theories/base_logic/lib/boxes.v | 10 +- theories/base_logic/lib/own.v | 193 ++++++++++++++++++--------- theories/base_logic/lib/saved_prop.v | 12 +- theories/base_logic/lib/wsat.v | 10 +- 4 files changed, 143 insertions(+), 82 deletions(-) diff --git a/theories/base_logic/lib/boxes.v b/theories/base_logic/lib/boxes.v index c9c7bfef4..a186d80b6 100644 --- a/theories/base_logic/lib/boxes.v +++ b/theories/base_logic/lib/boxes.v @@ -8,7 +8,7 @@ Import uPred. Class boxG Σ := boxG_inG :> inG Σ (prodR (excl_authR boolO) - (optionR (agreeR (laterO (iPrePropO Σ))))). + (optionR (agreeR (laterO (iPropO Σ))))). Definition boxΣ : gFunctors := #[ GFunctor (excl_authR boolO * optionRF (agreeRF (â–¶ ∙)) ) ]. @@ -25,7 +25,7 @@ Section box_defs. own γ (a, None). Definition box_own_prop (γ : slice_name) (P : iProp Σ) : iProp Σ := - own γ (ε, Some (to_agree (Next (iProp_unfold P)))). + own γ (ε, Some (to_agree (Next P))). Definition slice_inv (γ : slice_name) (P : iProp Σ) : iProp Σ := ∃ b, box_own_auth γ (â—E b) ∗ if b then P else True. @@ -93,9 +93,7 @@ Lemma box_own_agree γ Q1 Q2 : box_own_prop γ Q1 ∗ box_own_prop γ Q2 ⊢ â–· (Q1 ≡ Q2). Proof. rewrite /box_own_prop -own_op own_valid prod_validI /= and_elim_r. - rewrite option_validI /= agree_validI agree_equivI later_equivI /=. - iIntros "#HQ". iNext. rewrite -{2}(iProp_fold_unfold Q1). - iRewrite "HQ". by rewrite iProp_fold_unfold. + by rewrite option_validI /= agree_validI agree_equivI later_equivI /=. Qed. Lemma box_alloc : ⊢ box N ∅ True. @@ -109,7 +107,7 @@ Lemma slice_insert_empty E q f Q P : Proof. iDestruct 1 as (Φ) "[#HeqP Hf]". iMod (own_alloc_cofinite (â—E false â‹… â—¯E false, - Some (to_agree (Next (iProp_unfold Q)))) (dom _ f)) + Some (to_agree (Next Q))) (dom _ f)) as (γ) "[Hdom Hγ]"; first by (split; [apply auth_both_valid_discrete|]). rewrite pair_split. iDestruct "Hγ" as "[[Hγ Hγ'] #HγQ]". iDestruct "Hdom" as % ?%not_elem_of_dom. diff --git a/theories/base_logic/lib/own.v b/theories/base_logic/lib/own.v index 74d39b9ad..ee1f44d5c 100644 --- a/theories/base_logic/lib/own.v +++ b/theories/base_logic/lib/own.v @@ -8,16 +8,20 @@ Import uPred. individual CMRAs instead of (lists of) CMRA *functors*. This additional class is needed because Coq is otherwise unable to solve type class constraints due to higher-order unification problems. *) -Class inG (Σ : gFunctors) (A : cmraT) := - InG { inG_id : gid Σ; inG_prf : - A = rFunctor_apply (gFunctors_lookup Σ inG_id) (iPrePropO Σ)}. +Class inG (Σ : gFunctors) (A : cmraT) := InG { + inG_id : gid Σ; + inG_apply := rFunctor_apply (gFunctors_lookup Σ inG_id); + inG_prf : A = inG_apply (iPropO Σ) _; +}. Arguments inG_id {_ _} _. +Arguments inG_apply {_ _} _ _ {_}. + (** We use the mode [-] for [Σ] since there is always a unique [Σ]. We use the mode [!] for [A] since we can have multiple [inG]s for different [A]s, so we do not want Coq to pick one arbitrarily. *) Hint Mode inG - ! : typeclass_instances. -Lemma subG_inG Σ (F : gFunctor) : subG F Σ → inG Σ (rFunctor_apply F (iPrePropO Σ)). +Lemma subG_inG Σ (F : gFunctor) : subG F Σ → inG Σ (rFunctor_apply F (iPropO Σ)). Proof. move=> /(_ 0%fin) /= [j ->]. by exists j. Qed. (** This tactic solves the usual obligations "subG ? Σ → {in,?}G ? Σ" *) @@ -51,8 +55,16 @@ Ltac solve_inG := split; (assumption || by apply _). (** * Definition of the connective [own] *) +Definition inG_unfold {Σ A} {i : inG Σ A} : + inG_apply i (iPropO Σ) -n> inG_apply i (iPrePropO Σ) := + rFunctor_map _ (iProp_fold, iProp_unfold). +Definition inG_fold {Σ A} {i : inG Σ A} : + inG_apply i (iPrePropO Σ) -n> inG_apply i (iPropO Σ) := + rFunctor_map _ (iProp_unfold, iProp_fold). + Definition iRes_singleton {Σ A} {i : inG Σ A} (γ : gname) (a : A) : iResUR Σ := - discrete_fun_singleton (inG_id i) {[ γ := cmra_transport inG_prf a ]}. + discrete_fun_singleton (inG_id i) + {[ γ := inG_unfold (cmra_transport inG_prf a) ]}. Instance: Params (@iRes_singleton) 4 := {}. Definition own_def `{!inG Σ A} (γ : gname) (a : A) : iProp Σ := @@ -65,17 +77,83 @@ Instance: Params (@own) 4 := {}. (** * Properties about ghost ownership *) Section global. -Context `{Hin: !inG Σ A}. +Context `{i : !inG Σ A}. Implicit Types a : A. (** ** Properties of [iRes_singleton] *) -Global Instance iRes_singleton_ne γ : - NonExpansive (@iRes_singleton Σ A _ γ). +Lemma inG_unfold_fold (x : inG_apply i (iPrePropO Σ)) : inG_unfold (inG_fold x) ≡ x. +Proof. + rewrite /inG_unfold /inG_fold -rFunctor_map_compose -{2}[x]rFunctor_map_id. + apply (ne_proper (rFunctor_map _)); split=> ?; apply iProp_unfold_fold. +Qed. +Lemma inG_fold_unfold (x : inG_apply i (iPropO Σ)) : inG_fold (inG_unfold x) ≡ x. +Proof. + rewrite /inG_unfold /inG_fold -rFunctor_map_compose -{2}[x]rFunctor_map_id. + apply (ne_proper (rFunctor_map _)); split=> ?; apply iProp_fold_unfold. +Qed. + +Global Instance iRes_singleton_ne γ : NonExpansive (@iRes_singleton Σ A _ γ). Proof. by intros n a a' Ha; apply discrete_fun_singleton_ne; rewrite Ha. Qed. +Lemma iRes_singleton_validI γ a : ✓ (iRes_singleton γ a) ⊢@{iPropI Σ} ✓ a. +Proof. + rewrite /iRes_singleton. + rewrite discrete_fun_validI (forall_elim (inG_id i)) discrete_fun_lookup_singleton. + rewrite gmap_validI (forall_elim γ) lookup_singleton option_validI. + trans (✓ cmra_transport inG_prf a : iProp Σ)%I; last by destruct inG_prf. + apply valid_entails. + move=> n /(cmra_morphism_validN inG_fold). by rewrite inG_fold_unfold. +Qed. Lemma iRes_singleton_op γ a1 a2 : iRes_singleton γ (a1 â‹… a2) ≡ iRes_singleton γ a1 â‹… iRes_singleton γ a2. Proof. - rewrite /iRes_singleton discrete_fun_singleton_op singleton_op -cmra_transport_op //. + rewrite /iRes_singleton discrete_fun_singleton_op singleton_op cmra_transport_op. + f_equiv. apply: singletonM_proper. apply (cmra_morphism_op _). +Qed. + +Global Instance iRes_singleton_discrete γ a : + Discrete a → Discrete (iRes_singleton γ a). +Proof. + intros ?. rewrite /iRes_singleton. + apply discrete_fun_singleton_discrete, gmap_singleton_discrete; [apply _|]. + intros x Hx. assert (cmra_transport inG_prf a ≡ inG_fold x) as Ha. + { apply (discrete _). by rewrite -Hx inG_fold_unfold. } + by rewrite Ha inG_unfold_fold. +Qed. +Global Instance iRes_singleton_core_id γ a : + CoreId a → CoreId (iRes_singleton γ a). +Proof. + intros. apply discrete_fun_singleton_core_id, gmap_singleton_core_id. + by rewrite /CoreId -cmra_morphism_pcore core_id. +Qed. + +Lemma later_internal_eq_iRes_singleton γ a r : + â–· (r ≡ iRes_singleton γ a) ⊢@{iPropI Σ} + â—‡ ∃ b r', r ≡ iRes_singleton γ b â‹… r' ∧ â–· (a ≡ b). +Proof. + assert (NonExpansive (λ r : iResUR Σ, r (inG_id i) !! γ)). + { intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id i)). } + rewrite (f_equivI (λ r : iResUR Σ, r (inG_id i) !! γ) r). + rewrite {1}/iRes_singleton discrete_fun_lookup_singleton lookup_singleton. + rewrite option_equivI. case Hb: (r (inG_id _) !! γ)=> [b|]; last first. + { by rewrite /bi_except_0 -or_intro_l. } + rewrite -except_0_intro. + rewrite -(exist_intro (cmra_transport (eq_sym inG_prf) (inG_fold b))). + rewrite -(exist_intro (discrete_fun_insert (inG_id _) (delete γ (r (inG_id i))) r)). + apply and_intro. + - apply equiv_internal_eq. rewrite /iRes_singleton. + rewrite cmra_transport_trans eq_trans_sym_inv_l /=. + intros i'. rewrite discrete_fun_lookup_op. + destruct (decide (i' = inG_id i)) as [->|?]. + + rewrite discrete_fun_lookup_insert discrete_fun_lookup_singleton. + intros γ'. rewrite lookup_op. destruct (decide (γ' = γ)) as [->|?]. + * by rewrite lookup_singleton lookup_delete Hb inG_unfold_fold. + * by rewrite lookup_singleton_ne // lookup_delete_ne // left_id. + + rewrite discrete_fun_lookup_insert_ne //. + by rewrite discrete_fun_lookup_singleton_ne // left_id. + - apply later_mono. rewrite (f_equivI inG_fold) inG_fold_unfold. + apply: (internal_eq_rewrite' _ _ (λ b, a ≡ cmra_transport (eq_sym inG_prf) b)%I); + [solve_proper|apply internal_eq_sym|]. + rewrite cmra_transport_trans eq_trans_sym_inv_r /=. apply internal_eq_refl. Qed. (** ** Properties of [own] *) @@ -93,13 +171,7 @@ Global Instance own_mono' γ : Proper (flip (≼) ==> (⊢)) (@own Σ A _ γ). Proof. intros a1 a2. apply own_mono. Qed. Lemma own_valid γ a : own γ a ⊢ ✓ a. -Proof. - rewrite !own_eq /own_def ownM_valid /iRes_singleton. - rewrite discrete_fun_validI (forall_elim (inG_id Hin)) discrete_fun_lookup_singleton. - rewrite gmap_validI (forall_elim γ) lookup_singleton option_validI. - (* implicit arguments differ a bit *) - by trans (✓ cmra_transport inG_prf a : iProp Σ)%I; last destruct inG_prf. -Qed. +Proof. by rewrite !own_eq /own_def ownM_valid iRes_singleton_validI. Qed. Lemma own_valid_2 γ a1 a2 : own γ a1 -∗ own γ a2 -∗ ✓ (a1 â‹… a2). Proof. apply wand_intro_r. by rewrite -own_op own_valid. Qed. Lemma own_valid_3 γ a1 a2 a3 : own γ a1 -∗ own γ a2 -∗ own γ a3 -∗ ✓ (a1 â‹… a2 â‹… a3). @@ -110,38 +182,22 @@ Lemma own_valid_l γ a : own γ a ⊢ ✓ a ∗ own γ a. Proof. by rewrite comm -own_valid_r. Qed. Global Instance own_timeless γ a : Discrete a → Timeless (own γ a). -Proof. rewrite !own_eq /own_def; apply _. Qed. +Proof. rewrite !own_eq /own_def. apply _. Qed. Global Instance own_core_persistent γ a : CoreId a → Persistent (own γ a). Proof. rewrite !own_eq /own_def; apply _. Qed. -Lemma later_own γ a : â–· own γ a -∗ â—‡ (∃ b, own γ b ∧ â–· (a ≡ b)). +Lemma later_own γ a : â–· own γ a -∗ â—‡ ∃ b, own γ b ∧ â–· (a ≡ b). Proof. rewrite own_eq /own_def later_ownM. apply exist_elim=> r. - assert (NonExpansive (λ r : iResUR Σ, r (inG_id Hin) !! γ)). - { intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id Hin)). } - rewrite (f_equivI (λ r : iResUR Σ, r (inG_id Hin) !! γ) _ r). - rewrite {1}/iRes_singleton discrete_fun_lookup_singleton lookup_singleton. - rewrite option_equivI. case Hb: (r (inG_id _) !! γ)=> [b|]; last first. - { by rewrite and_elim_r /bi_except_0 -or_intro_l. } - rewrite -except_0_intro -(exist_intro (cmra_transport (eq_sym inG_prf) b)). - apply and_mono. - - rewrite /iRes_singleton. assert (∀ {A A' : cmraT} (Heq : A' = A) (a : A), - cmra_transport Heq (cmra_transport (eq_sym Heq) a) = a) as -> - by (by intros ?? ->). - apply ownM_mono=> /=. - exists (discrete_fun_insert (inG_id _) (delete γ (r (inG_id Hin))) r). - intros i'. rewrite discrete_fun_lookup_op. - destruct (decide (i' = inG_id Hin)) as [->|?]. - + rewrite discrete_fun_lookup_insert discrete_fun_lookup_singleton. - intros γ'. rewrite lookup_op. destruct (decide (γ' = γ)) as [->|?]. - * by rewrite lookup_singleton lookup_delete Hb. - * by rewrite lookup_singleton_ne // lookup_delete_ne // left_id. - + rewrite discrete_fun_lookup_insert_ne //. - by rewrite discrete_fun_lookup_singleton_ne // left_id. - - apply later_mono. - by assert (∀ {A A' : cmraT} (Heq : A' = A) (a' : A') (a : A), - cmra_transport Heq a' ≡ a ⊢@{iPropI Σ} - a' ≡ cmra_transport (eq_sym Heq) a) as -> by (by intros ?? ->). + assert (NonExpansive (λ r : iResUR Σ, r (inG_id i) !! γ)). + { intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id i)). } + rewrite internal_eq_sym later_internal_eq_iRes_singleton. + rewrite (except_0_intro (uPred_ownM r)) -except_0_and. f_equiv. + rewrite and_exist_l. f_equiv=> b. rewrite and_exist_l. apply exist_elim=> r'. + rewrite assoc. apply and_mono_l. + etrans; [|apply ownM_mono, (cmra_included_l _ r')]. + eapply (internal_eq_rewrite' _ _ uPred_ownM _); [apply and_elim_r|]. + apply and_elim_l. Qed. (** ** Allocation *) @@ -152,13 +208,16 @@ Lemma own_alloc_strong_dep (f : gname → A) (P : gname → Prop) : (∀ γ, P γ → ✓ (f γ)) → ⊢ |==> ∃ γ, ⌜P γ⌠∗ own γ (f γ). Proof. - intros HP Ha. + intros HPinf Hf. rewrite -(bupd_mono (∃ m, ⌜∃ γ, P γ ∧ m = iRes_singleton γ (f γ)⌠∧ uPred_ownM m)%I). - rewrite /bi_emp_valid (ownM_unit emp). - eapply bupd_ownM_updateP, (discrete_fun_singleton_updateP_empty (inG_id Hin)). - + eapply alloc_updateP_strong_dep'; first done. - intros i _ ?. eapply cmra_transport_valid, Ha. done. - + naive_solver. + apply bupd_ownM_updateP, (discrete_fun_singleton_updateP_empty _ (λ m, ∃ γ, + m = {[ γ := inG_unfold (cmra_transport inG_prf (f γ)) ]} ∧ P γ)); + [|naive_solver]. + apply (alloc_updateP_strong_dep _ P _ (λ γ, + inG_unfold (cmra_transport inG_prf (f γ)))); [done| |naive_solver]. + intros γ _ ?. + by apply (cmra_morphism_valid inG_unfold), cmra_transport_valid, Hf. - apply exist_elim=>m; apply pure_elim_l=>-[γ [Hfresh ->]]. by rewrite !own_eq /own_def -(exist_intro γ) pure_True // left_id. Qed. @@ -168,8 +227,8 @@ Proof. intros Ha. apply (own_alloc_strong_dep f (λ γ, γ ∉ G))=> //. apply (pred_infinite_set (C:=gset gname)). - intros E. set (i := fresh (G ∪ E)). - exists i. apply not_elem_of_union, is_fresh. + intros E. set (γ := fresh (G ∪ E)). + exists γ. apply not_elem_of_union, is_fresh. Qed. Lemma own_alloc_dep (f : gname → A) : (∀ γ, ✓ (f γ)) → ⊢ |==> ∃ γ, own γ (f γ). @@ -191,14 +250,22 @@ Proof. intros Ha. eapply own_alloc_dep with (f := λ _, a); eauto. Qed. (** ** Frame preserving updates *) Lemma own_updateP P γ a : a ~~>: P → own γ a ==∗ ∃ a', ⌜P a'⌠∗ own γ a'. Proof. - intros Ha. rewrite !own_eq. - rewrite -(bupd_mono (∃ m, ⌜∃ a', m = iRes_singleton γ a' ∧ P a'⌠∧ uPred_ownM m)%I). - - eapply bupd_ownM_updateP, discrete_fun_singleton_updateP; - first by (eapply singleton_updateP', cmra_transport_updateP', Ha). - naive_solver. - - apply exist_elim=>m; apply pure_elim_l=>-[a' [-> HP]]. + intros Hupd. rewrite !own_eq. + rewrite -(bupd_mono (∃ m, + ⌜ ∃ a', m = iRes_singleton γ a' ∧ P a' ⌠∧ uPred_ownM m)%I). + - apply bupd_ownM_updateP, (discrete_fun_singleton_updateP _ (λ m, ∃ x, + m = {[ γ := x ]} ∧ ∃ x', + x = inG_unfold x' ∧ ∃ a', + x' = cmra_transport inG_prf a' ∧ P a')); [|naive_solver]. + apply singleton_updateP', (iso_cmra_updateP' inG_fold). + { apply inG_unfold_fold. } + { apply (cmra_morphism_op _). } + { intros n x. split; [|apply (cmra_morphism_validN _)]. + move=> /(cmra_morphism_validN inG_fold). by rewrite inG_fold_unfold. } + by apply cmra_transport_updateP'. + - apply exist_elim=> m; apply pure_elim_l=> -[a' [-> HP]]. rewrite -(exist_intro a'). rewrite -persistent_and_sep. - by apply and_intro; [apply pure_intro|]. + by apply and_intro; [apply pure_intro|]. Qed. Lemma own_update γ a a' : a ~~> a' → own γ a ==∗ own γ a'. @@ -224,13 +291,16 @@ Arguments own_update {_ _} [_] _ _ _ _. Arguments own_update_2 {_ _} [_] _ _ _ _ _. Arguments own_update_3 {_ _} [_] _ _ _ _ _ _. -Lemma own_unit A `{!inG Σ (A:ucmraT)} γ : ⊢ |==> own γ (ε:A). +Lemma own_unit A `{i : !inG Σ (A:ucmraT)} γ : ⊢ |==> own γ (ε:A). Proof. rewrite /bi_emp_valid (ownM_unit emp) !own_eq /own_def. apply bupd_ownM_update, discrete_fun_singleton_update_empty. - apply (alloc_unit_singleton_update (cmra_transport inG_prf ε)); last done. - - apply cmra_transport_valid, ucmra_unit_valid. - - intros x; destruct inG_prf. by rewrite left_id. + apply (alloc_unit_singleton_update (inG_unfold (cmra_transport inG_prf ε))). + - apply (cmra_morphism_valid _), cmra_transport_valid, ucmra_unit_valid. + - intros x. rewrite -(inG_unfold_fold x) -(cmra_morphism_op inG_unfold). + f_equiv. generalize (inG_fold x)=> x'. + destruct inG_prf=> /=. by rewrite left_id. + - done. Qed. (** Big op class instances *) @@ -258,7 +328,6 @@ Section big_op_instances. own γ ([^op mset] x ∈ X, g x) ⊣⊢ [∗ mset] x ∈ X, own γ (g x). Proof. apply (big_opMS_commute1 _). Qed. - Global Instance own_cmra_sep_entails_homomorphism : MonoidHomomorphism op uPred_sep (⊢) (own γ). Proof. diff --git a/theories/base_logic/lib/saved_prop.v b/theories/base_logic/lib/saved_prop.v index d0e61c488..586725300 100644 --- a/theories/base_logic/lib/saved_prop.v +++ b/theories/base_logic/lib/saved_prop.v @@ -9,7 +9,7 @@ Import uPred. saved whatever-you-like. *) Class savedAnythingG (Σ : gFunctors) (F : oFunctor) := SavedAnythingG { - saved_anything_inG :> inG Σ (agreeR (oFunctor_apply F (iPrePropO Σ))); + saved_anything_inG :> inG Σ (agreeR (oFunctor_apply F (iPropO Σ))); saved_anything_contractive : oFunctorContractive F (* NOT an instance to avoid cycles with [subG_savedAnythingΣ]. *) }. Definition savedAnythingΣ (F : oFunctor) `{!oFunctorContractive F} : gFunctors := @@ -21,7 +21,7 @@ Proof. solve_inG. Qed. Definition saved_anything_own `{!savedAnythingG Σ F} (γ : gname) (x : oFunctor_apply F (iPropO Σ)) : iProp Σ := - own γ (to_agree $ (oFunctor_map F (iProp_fold, iProp_unfold) x)). + own γ (to_agree x). Typeclasses Opaque saved_anything_own. Instance: Params (@saved_anything_own) 4 := {}. @@ -56,13 +56,7 @@ Section saved_anything. Proof. iIntros "Hx Hy". rewrite /saved_anything_own. iDestruct (own_valid_2 with "Hx Hy") as "Hv". - rewrite agree_validI agree_equivI. - set (G1 := oFunctor_map F (iProp_fold, iProp_unfold)). - set (G2 := oFunctor_map F (@iProp_unfold Σ, @iProp_fold Σ)). - assert (∀ z, G2 (G1 z) ≡ z) as help. - { intros z. rewrite /G1 /G2 -oFunctor_map_compose -{2}[z]oFunctor_map_id. - apply (ne_proper (oFunctor_map F)); split=>?; apply iProp_fold_unfold. } - rewrite -{2}[x]help -{2}[y]help. by iApply f_equivI. + by rewrite agree_validI agree_equivI. Qed. End saved_anything. diff --git a/theories/base_logic/lib/wsat.v b/theories/base_logic/lib/wsat.v index b665b0562..e30f3a194 100644 --- a/theories/base_logic/lib/wsat.v +++ b/theories/base_logic/lib/wsat.v @@ -9,7 +9,7 @@ exception of what's in the [invG] module. The module [invG] is thus exported in [fancy_updates], which [wsat] is only imported. *) Module invG. Class invG (Σ : gFunctors) : Set := WsatG { - inv_inG :> inG Σ (authR (gmapUR positive (agreeR (laterO (iPrePropO Σ))))); + inv_inG :> inG Σ (authR (gmapUR positive (agreeR (laterO (iPropO Σ))))); enabled_inG :> inG Σ coPset_disjR; disabled_inG :> inG Σ (gset_disjR positive); invariant_name : gname; @@ -23,7 +23,7 @@ Module invG. GFunctor (gset_disjUR positive)]. Class invPreG (Σ : gFunctors) : Set := WsatPreG { - inv_inPreG :> inG Σ (authR (gmapUR positive (agreeR (laterO (iPrePropO Σ))))); + inv_inPreG :> inG Σ (authR (gmapUR positive (agreeR (laterO (iPropO Σ))))); enabled_inPreG :> inG Σ coPset_disjR; disabled_inPreG :> inG Σ (gset_disjR positive); }. @@ -33,8 +33,8 @@ Module invG. End invG. Import invG. -Definition invariant_unfold {Σ} (P : iProp Σ) : agree (later (iPrePropO Σ)) := - to_agree (Next (iProp_unfold P)). +Definition invariant_unfold {Σ} (P : iProp Σ) : agree (later (iProp Σ)) := + to_agree (Next P). Definition ownI `{!invG Σ} (i : positive) (P : iProp Σ) : iProp Σ := own invariant_name (â—¯ {[ i := invariant_unfold P ]}). Arguments ownI {_ _} _ _%I. @@ -121,7 +121,7 @@ Proof. iRewrite "HI" in "HvI". rewrite uPred.option_validI agree_validI. iRewrite -"HvI" in "HI". by rewrite agree_idemp. } rewrite /invariant_unfold. - by rewrite agree_equivI later_equivI iProp_unfold_equivI. + by rewrite agree_equivI later_equivI. Qed. Lemma ownI_open i P : wsat ∗ ownI i P ∗ ownE {[i]} ⊢ wsat ∗ â–· P ∗ ownD {[i]}. -- GitLab