From f3d9b2db2165ea4f003bfdcc520f147a9ccbe283 Mon Sep 17 00:00:00 2001 From: Dan Frumin <dfrumin@cs.ru.nl> Date: Sat, 15 Aug 2020 13:59:04 +0200 Subject: [PATCH] Add `array_init` and corresponding WP specs. --- theories/heap_lang/lib/array.v | 98 ++++++++++++++++++++++++++++++++++ 1 file changed, 98 insertions(+) diff --git a/theories/heap_lang/lib/array.v b/theories/heap_lang/lib/array.v index 8a16448b8..a4f0efd04 100644 --- a/theories/heap_lang/lib/array.v +++ b/theories/heap_lang/lib/array.v @@ -31,6 +31,19 @@ Definition array_clone : val := array_copy_to "dst" "src" "n";; "dst". +Definition array_init_loop : val := + rec: "loop" "src" "i" "n" "f" := + if: "i" = "n" then #() + else "src" +ₗ "i" <- "f" "i";; + "loop" "src" ("i" + #1) "n" "f". + +(* similar to [Array.init] in OCaml's stdlib *) +Definition array_init : val := + λ: "n" "f", + let: "src" := AllocN "n" #() in + array_init_loop "src" #0 "n" "f";; + "src". + Section proof. Context `{!heapG Σ}. @@ -107,4 +120,89 @@ Section proof. iApply (twp_array_clone with "H"); [auto..|]; iIntros (l') "H HΦ". by iApply "HΦ". Qed. + (* TODO: move to std++? *) + Lemma insert_0_replicate {A : Type} (x y : A) n : + <[0:=y]>(replicate (S n) x) = y :: replicate n x. + Proof. by induction n; eauto. Qed. + + Lemma wp_array_init_loop {A : Type} (g : A → val) (Q : nat → A → iProp Σ) + (xs : list A) i n l (f : val) stk E : + (0 < n) → + length xs = i → + (i ≤ n) → + ([∗ list] k↦x∈xs, Q k x) -∗ + (□ ∀ i : nat, WP f #i @ stk; E {{ v, ∃ x : A, ⌜v = g x⌠∗ Q i x }}) -∗ + l ↦∗ ((g <$> xs) ++ replicate (n - i) #()) -∗ + WP array_init_loop #l #i #n f @ stk; E {{ _, ∃ ys, + l ↦∗ (g <$> (xs ++ ys)) ∗ ⌜length (xs++ys) = n⌠∗ ([∗ list] k↦x∈(xs++ys), Q k x) }}. + Proof. + iIntros (Hn Hxs Hi) "Hxs #Hf Hl". iRevert (Hxs Hi). + iLöb as "IH" forall (xs i). iIntros (Hxs Hi). + wp_rec. wp_pures. case_bool_decide; simplify_eq/=; wp_pures. + - iExists []. iFrame. + assert (length xs - length xs = 0) as -> by lia. + rewrite !app_nil_r. eauto with iFrame. + - wp_bind (f #(length xs)). iApply (wp_wand with "Hf"). + iIntros (v). iDestruct 1 as (x) "[-> Hx]". + wp_apply (wp_store_offset with "Hl"). + { apply lookup_lt_is_Some_2. + rewrite app_length. + assert (length xs ≠n) by naive_solver. + assert (n - length xs > 0) by lia. + rewrite fmap_length replicate_length. lia. } + iIntros "Hl". wp_pures. + assert ((Z.of_nat (length xs) + 1)%Z = Z.of_nat (length xs + 1)) as -> by lia. + iSpecialize ("IH" $! (xs++[x]) (length xs + 1) with "[Hx Hxs] [Hl] [%] [%]"). + { rewrite big_sepL_app /= Nat.add_0_r. by iFrame. } + { assert (length xs = length xs + 0) as Hlen1 by lia. + rewrite {1}Hlen1. + rewrite -{1}(fmap_length g xs). + rewrite insert_app_r fmap_app /=. + rewrite app_assoc_reverse /=. + assert (length xs ≠n) by naive_solver. + assert ((n - length xs) = S (n - (length xs + 1))) as -> by lia. + by rewrite insert_0_replicate. } + { by rewrite app_length. } + { assert (length xs ≠n) by naive_solver. lia. } + iApply (wp_wand with "IH"). + iIntros (_). iDestruct 1 as (ys) "(Hys & Hlen & HQs)". + iDestruct "Hlen" as %Hlen. + rewrite -app_assoc. + iExists ([x] ++ ys). iFrame. iPureIntro. + by rewrite app_assoc. + Qed. + + Theorem wp_array_init {A : Type} (g : A → val) (Q : nat → A → iProp Σ) + n (f : val) stk E : + (0 < n)%Z → + {{{ (□ ∀ i : nat, WP f #i @ stk; E {{ v, ∃ x : A, ⌜v = g x⌠∗ Q i x }}) }}} + array_init #n f @ stk; E + {{{ l xs, RET #l; l ↦∗ (g<$>xs) ∗ ⌜Z.of_nat (length xs) = n⌠∗ ([∗ list] k↦x∈xs, Q k x) }}}. + Proof. + intros Hn. iIntros (Φ) "#Hf HΦ". + wp_rec. wp_pures. wp_alloc l as "Hl"; first done. + wp_pures. + iPoseProof (wp_array_init_loop g Q [] 0 (Z.to_nat n) with "[//] Hf [Hl]") as "H"; try by (simpl; lia). + { simpl. assert (Z.to_nat n - 0 = Z.to_nat n) as -> by lia. done. } + assert (Z.of_nat 0%nat = 0%Z) as -> by lia. + assert (Z.of_nat (Z.to_nat n) = n) as -> by lia. + wp_apply (wp_wand with "H"). + iIntros (?). iDestruct 1 as (vs) "(Hl & % & HQs)". + wp_pures. iApply "HΦ". + iFrame "Hl HQs". iPureIntro. lia. + Qed. + + Lemma wp_array_init' (Q : nat → val → iProp Σ) n (f : val) stk E : + (0 < n)%Z → + {{{ (□ ∀ i : nat, WP f #i @ stk; E {{ v, Q i v }}) }}} + array_init #n f @ stk; E + {{{ l xs, RET #l; l ↦∗ xs ∗ ⌜Z.of_nat (length xs) = n⌠∗ ([∗ list] k↦x∈xs, Q k x) }}}. + Proof. + intros Hn. iIntros (Φ) "#Hf HΦ". + iApply (wp_array_init id Q with "[Hf]"); try done. + { iModIntro. iIntros (i). iApply (wp_wand with "Hf"). + iIntros (v) "Hv". iExists v; eauto with iFrame. } + iNext. iIntros (l xs). by rewrite list_fmap_id. + Qed. + End proof. -- GitLab