diff --git a/coq-iris.opam b/coq-iris.opam index 93089a1f9c6991dc50a9d423cc057d6097cb4c5d..bf1fed1f86b0e8f4aee9f7d4129e754d73622340 100644 --- a/coq-iris.opam +++ b/coq-iris.opam @@ -15,7 +15,7 @@ iris.prelude, iris.algebra, iris.si_logic, iris.bi, iris.proofmode, iris.base_lo depends: [ "coq" { (>= "8.12" & < "8.15~") | (= "dev") } - "coq-stdpp" { (= "dev.2021-07-19.1.7d502178") | (= "dev") } + "coq-stdpp" { (= "dev.2021-07-19.2.e2c65b35") | (= "dev") } ] build: ["./make-package" "iris" "-j%{jobs}%"] diff --git a/iris/algebra/big_op.v b/iris/algebra/big_op.v index 1d91fdb9e2eecc6f2c7c462848d34b39d2bef662..cdbc6298b5765de007a180cbf77109727ac8ba83 100644 --- a/iris/algebra/big_op.v +++ b/iris/algebra/big_op.v @@ -36,7 +36,7 @@ Notation "'[^' o 'list]' x ∈ l , P" := (big_opL o (λ _ x, P) l) format "[^ o list] x ∈ l , P") : stdpp_scope. Definition big_opM_def `{Monoid M o} `{Countable K} {A} (f : K → A → M) - (m : gmap K A) : M := big_opL o (λ _, curry f) (map_to_list m). + (m : gmap K A) : M := big_opL o (λ _, uncurry f) (map_to_list m). Definition big_opM_aux : seal (@big_opM_def). Proof. by eexists. Qed. Definition big_opM := big_opM_aux.(unseal). Global Arguments big_opM {M} o {_ K _ _ A} _ _. diff --git a/iris/program_logic/total_weakestpre.v b/iris/program_logic/total_weakestpre.v index 59808710778d9577b6e8936400b28266f3f2e93a..d6152e97b5860dcd758a74913e266bbd7553c387 100644 --- a/iris/program_logic/total_weakestpre.v +++ b/iris/program_logic/total_weakestpre.v @@ -45,7 +45,7 @@ Qed. Definition twp_pre' `{!irisGS Λ Σ} (s : stuckness) : (prodO (prodO (leibnizO coPset) (exprO Λ)) (val Λ -d> iPropO Σ) → iPropO Σ) → prodO (prodO (leibnizO coPset) (exprO Λ)) (val Λ -d> iPropO Σ) → iPropO Σ := - curry3 ∘ twp_pre s ∘ uncurry3. + uncurry3 ∘ twp_pre s ∘ curry3. Local Instance twp_pre_mono' `{!irisGS Λ Σ} s : BiMonoPred (twp_pre' s). Proof. @@ -54,7 +54,7 @@ Proof. iApply twp_pre_mono. iIntros "!>" (E e Φ). iApply ("H" $! (E,e,Φ)). - intros wp Hwp n [[E1 e1] Φ1] [[E2 e2] Φ2] [[?%leibniz_equiv ?%leibniz_equiv] ?]; simplify_eq/=. - rewrite /uncurry3 /twp_pre. do 26 (f_equiv || done). by apply pair_ne. + rewrite /curry3 /twp_pre. do 26 (f_equiv || done). by apply pair_ne. Qed. Definition twp_def `{!irisGS Λ Σ} : Twp (iProp Σ) (expr Λ) (val Λ) stuckness @@ -83,7 +83,7 @@ Lemma twp_ind s Ψ : ∀ e E Φ, WP e @ s; E [{ Φ }] -∗ Ψ E e Φ. Proof. iIntros (HΨ). iIntros "#IH" (e E Φ) "H". rewrite twp_eq. - set (Ψ' := curry3 Ψ : + set (Ψ' := uncurry3 Ψ : prodO (prodO (leibnizO coPset) (exprO Λ)) (val Λ -d> iPropO Σ) → iPropO Σ). assert (NonExpansive Ψ'). { intros n [[E1 e1] Φ1] [[E2 e2] Φ2]