diff --git a/tests/proofmode_ascii.v b/tests/proofmode_ascii.v index aa2e63c33a6526f5bbfc487c08cc26beb2397a7d..cdefd0d4ea407a53df6429a0f4046e38e752c986 100644 --- a/tests/proofmode_ascii.v +++ b/tests/proofmode_ascii.v @@ -301,57 +301,57 @@ Proof. naive_solver. Qed. Check "p1". Lemma p1 : forall P, True -> P |- P. Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. Check "p2". Lemma p2 : forall P, True /\ (P |- P). Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. Check "p3". Lemma p3 : exists P, P |- P. Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. Check "p4". Lemma p4 : |-@{PROP} exists (x : nat), ⌜x = 0âŒ. Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. Check "p5". Lemma p5 : |-@{PROP} exists (x : nat), ⌜forall y : nat, y = yâŒ. Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. Check "p6". Lemma p6 : exists! (z : nat), |-@{PROP} exists (x : nat), ⌜forall y : nat, y = y⌠** ⌜z = 0âŒ. Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. Check "p7". Lemma p7 : forall (a : nat), a = 0 -> forall y, True |-@{PROP} ⌜y >= 0âŒ. Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. Check "p8". Lemma p8 : forall (a : nat), a = 0 -> forall y, |-@{PROP} ⌜y >= 0âŒ. Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. Check "p9". Lemma p9 : forall (a : nat), a = 0 -> forall y : nat, |-@{PROP} forall z : nat, ⌜z >= 0âŒ. Proof. - Unset Printing Notations. Show. Set Printing Notations. + Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals. Abort. -Set Printing Notations. +Set Printing Notations. Unset Printing Raw Literals. End parsing_tests.